These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36866684)

  • 1. Light-powered swarming phoretic antimony chalcogenide-based microrobots with "on-the-fly" photodegradation abilities.
    Jancik-Prochazkova A; Pumera M
    Nanoscale; 2023 Mar; 15(12):5726-5734. PubMed ID: 36866684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification.
    Urso M; Ussia M; Peng X; Oral CM; Pumera M
    Nat Commun; 2023 Nov; 14(1):6969. PubMed ID: 37914692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalysis dramatically influences motion of magnetic microrobots: Application to removal of microplastics and dyes.
    Mayorga-Burrezo P; Mayorga-Martinez CC; Pumera M
    J Colloid Interface Sci; 2023 Aug; 643():447-454. PubMed ID: 37086534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swarming Magnetically Navigated Indigo-Based Hydrophobic Microrobots for Oil Removal.
    Jancik-Prochazkova A; Mayorga-Martinez CC; Vyskočil J; Pumera M
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45545-45552. PubMed ID: 36165774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft Magnetic Microrobots for Photoactive Pollutant Removal.
    Maria-Hormigos R; Mayorga-Martinez CC; Pumera M
    Small Methods; 2023 Jan; 7(1):e2201014. PubMed ID: 36408765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Sb
    Gomaa MM; Sayed MH; Abdel-Wahed MS; Boshta M
    RSC Adv; 2023 Jul; 13(32):22054-22060. PubMed ID: 37483670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A diatom-based biohybrid microrobot with a high drug-loading capacity and pH-sensitive drug release for target therapy.
    Li M; Wu J; Lin D; Yang J; Jiao N; Wang Y; Liu L
    Acta Biomater; 2022 Dec; 154():443-453. PubMed ID: 36243369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For.
    Peng X; Urso M; Pumera M
    Small Methods; 2021 Oct; 5(10):e2100617. PubMed ID: 34927942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation.
    Peng X; Urso M; Ussia M; Pumera M
    ACS Nano; 2022 May; 16(5):7615-7625. PubMed ID: 35451832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh.
    Mayorga-Martinez CC; Zelenka J; Klima K; Kubanova M; Ruml T; Pumera M
    Adv Mater; 2023 Jun; 35(23):e2300191. PubMed ID: 36995927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication.
    Mayorga-Martinez CC; Zelenka J; Klima K; Mayorga-Burrezo P; Hoang L; Ruml T; Pumera M
    ACS Nano; 2022 Jun; 16(6):8694-8703. PubMed ID: 35507525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Enzymatic/Photocatalytic Degradation of Antibiotics via Morphologically Programmable Light-Driven ZnO Microrobots.
    Oral CM; Ussia M; Pumera M
    Small; 2022 Sep; 18(39):e2202600. PubMed ID: 36026536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Wavelength Light-Responsive Metal-Phenolic Network-Based Microrobots for Reactive Species Scavenging.
    Guo Z; Liu T; Gao W; Iffelsberger C; Kong B; Pumera M
    Adv Mater; 2023 Mar; 35(10):e2210994. PubMed ID: 36591619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Inorganic-Organic Visible-Light-Driven Microrobots Based on Donor-Acceptor Organic Polymer for Degradation of Toxic Psychoactive Substances.
    Kochergin YS; Villa K; Nemeškalová A; Kuchař M; Pumera M
    ACS Nano; 2021 Nov; 15(11):18458-18468. PubMed ID: 34730953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solitary and Collective Motion Behaviors of
    Fan X; Hu Q; Zhang X; Sun L; Yang Z
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel microrobots for biomedical applications.
    Song W; Li L; Liu X; Zhu Y; Yu S; Wang H; Wang L
    Front Chem; 2024; 12():1416314. PubMed ID: 38841335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-Photocatalyst Tandem Microrobot Powered by Urea for Escherichia coli Biofilm Eradication.
    Villa K; Sopha H; Zelenka J; Motola M; Dekanovsky L; Beketova DC; Macak JM; Ruml T; Pumera M
    Small; 2022 Sep; 18(36):e2106612. PubMed ID: 35122470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel green approach for fabricating visible, light sensitive nano-broccoli-like antimony trisulfide by marine Sb(v)-reducing bacteria: Revealing potential self-purification in coastal zones.
    Zhang H; Xie J; Sun Y; Zheng A; Hu X
    Enzyme Microb Technol; 2020 May; 136():109514. PubMed ID: 32331725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Bilayer Magnetically Actuated L-Shaped Microrobot Based on Chitosan via Photolithography.
    Wang H; Song X; Xiong J; Cheang UK
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium.
    Debata S; Kherani NA; Panda SK; Singh DP
    J Mater Chem B; 2022 Oct; 10(40):8235-8243. PubMed ID: 36129102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.