BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36866700)

  • 1. Optical mapping of contracting hearts.
    Kappadan V; Sohi A; Parlitz U; Luther S; Uzelac I; Fenton F; Peters NS; Christoph J; Ng FS
    J Physiol; 2023 Apr; 601(8):1353-1370. PubMed ID: 36866700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromechanical optical mapping.
    Christoph J; Schröder-Schetelig J; Luther S
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):150-169. PubMed ID: 28947080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution Optical Measurement of Cardiac Restitution, Contraction, and Fibrillation Dynamics in Beating vs. Blebbistatin-Uncoupled Isolated Rabbit Hearts.
    Kappadan V; Telele S; Uzelac I; Fenton F; Parlitz U; Luther S; Christoph J
    Front Physiol; 2020; 11():464. PubMed ID: 32528304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical mapping of cardiac electromechanics in beating in vivo hearts.
    Zhang H; Patton HN; Wood GA; Yan P; Loew LM; Acker CD; Walcott GP; Rogers JM
    Biophys J; 2023 Nov; 122(21):4207-4219. PubMed ID: 37775969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
    Lee P; Quintanilla JG; Alfonso-Almazán JM; Galán-Arriola C; Yan P; Sánchez-González J; Pérez-Castellano N; Pérez-Villacastín J; Ibañez B; Loew LM; Filgueiras-Rama D
    Cardiovasc Res; 2019 Sep; 115(11):1659-1671. PubMed ID: 30753358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker-Free Tracking for Motion Artifact Compensation and Deformation Measurements in Optical Mapping Videos of Contracting Hearts.
    Christoph J; Luther S
    Front Physiol; 2018; 9():1483. PubMed ID: 30450053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of motion artifact in transmembrane voltage-sensitive fluorescent dye emission in hearts.
    Tai DC; Caldwell BJ; LeGrice IJ; Hooks DA; Pullan AJ; Smaill BH
    Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H985-93. PubMed ID: 15130885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K
    Garrott K; Kuzmiak-Glancy S; Wengrowski A; Zhang H; Rogers J; Kay MW
    J Physiol; 2017 Jun; 595(12):3799-3813. PubMed ID: 28177123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.
    Bachtel AD; Gray RA; Stohlman JM; Bourgeois EB; Pollard AE; Rogers JM
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2120-6. PubMed ID: 21536528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Optical Mapping of Contracting Cardiac Tissues With GPU-Accelerated Numerical Motion Tracking.
    Lebert J; Ravi N; Kensah G; Christoph J
    Front Cardiovasc Med; 2022; 9():787627. PubMed ID: 35686036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Living cardiac tissue slices: an organotypic pseudo two-dimensional model for cardiac biophysics research.
    Wang K; Terrar D; Gavaghan DJ; Mu-U-Min R; Kohl P; Bollensdorff C
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):314-27. PubMed ID: 25124067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous optical mapping of transmembrane potential and wall motion in isolated, perfused whole hearts.
    Bourgeois EB; Bachtel AD; Huang J; Walcott GP; Rogers JM
    J Biomed Opt; 2011 Sep; 16(9):096020. PubMed ID: 21950934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image-based motion correction for optical mapping of cardiac electrical activity.
    Khwaounjoo P; Rutherford SL; Svrcek M; LeGrice IJ; Trew ML; Smaill BH
    Ann Biomed Eng; 2015 May; 43(5):1235-46. PubMed ID: 25384833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
    Zhang H; Iijima K; Huang J; Walcott GP; Rogers JM
    Biophys J; 2016 Jul; 111(2):438-451. PubMed ID: 27463145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical mapping of Langendorff-perfused rat hearts.
    Sill B; Hammer PE; Cowan DB
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19684567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex differences in β-adrenergic responsiveness of action potentials and intracellular calcium handling in isolated rabbit hearts.
    Hoeker GS; Hood AR; Katra RP; Poelzing S; Pogwizd SM
    PLoS One; 2014; 9(10):e111411. PubMed ID: 25340795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiparametric optical mapping of the Langendorff-perfused rabbit heart.
    Lou Q; Li W; Efimov IR
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21946767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen demand of perfused heart preparations: how electromechanical function and inadequate oxygenation affect physiology and optical measurements.
    Kuzmiak-Glancy S; Jaimes R; Wengrowski AM; Kay MW
    Exp Physiol; 2015 Jun; 100(6):603-16. PubMed ID: 25865254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochalasin D as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium.
    Wu J; Biermann M; Rubart M; Zipes DP
    J Cardiovasc Electrophysiol; 1998 Dec; 9(12):1336-47. PubMed ID: 9869533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emission ratiometry for simultaneous calcium and action potential measurements with coloaded dyes in rabbit hearts: reduction of motion and drift.
    Kong W; Walcott GP; Smith WM; Johnson PL; Knisley SB
    J Cardiovasc Electrophysiol; 2003 Jan; 14(1):76-82. PubMed ID: 12625615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.