These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 36866927)

  • 1. Recent Advances on Transition-Metal-Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion.
    Wang Y; Zhang M; Liu Y; Zheng Z; Liu B; Chen M; Guan G; Yan K
    Adv Sci (Weinh); 2023 May; 10(13):e2207519. PubMed ID: 36866927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition Metal-Based 2D Layered Double Hydroxide Nanosheets: Design Strategies and Applications in Oxygen Evolution Reaction.
    Gicha BB; Tufa LT; Kang S; Goddati M; Bekele ET; Lee J
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34070272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Layered-Double-Hydroxides Based Noble Metal Nanoparticles Efficient Electrocatalysts.
    Zhang Z; Li P; Zhang X; Hu C; Li Y; Yu B; Zeng N; Lv C; Song J; Li M
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly.
    Zhou D; Li P; Lin X; McKinley A; Kuang Y; Liu W; Lin WF; Sun X; Duan X
    Chem Soc Rev; 2021 Aug; 50(15):8790-8817. PubMed ID: 34160484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction.
    Lu X; Xue H; Gong H; Bai M; Tang D; Ma R; Sasaki T
    Nanomicro Lett; 2020 Apr; 12(1):86. PubMed ID: 34138111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction.
    Wan H; Chen F; Ma W; Liu X; Ma R
    Nanoscale; 2020 Nov; 12(42):21479-21496. PubMed ID: 33089855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of Co-Ni layered double hydroxides nanosheets wrapped on a prism-like metal-organic framework for efficient oxygen evolution reaction.
    Han D; Hao L; Chang M; Dong J; Gao Y; Zhang Y
    J Colloid Interface Sci; 2023 Mar; 634():14-21. PubMed ID: 36528967
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Wang Y; Chen C; Xiong X; Skaanvik SA; Zhang Y; Bøjesen ED; Wang Z; Liu W; Dong M
    J Am Chem Soc; 2024 Jun; 146(25):17032-17040. PubMed ID: 38871344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Self-Supported Layered Double Hydroxides for Oxygen Evolution Reaction.
    Wu L; Yu L; Xiao X; Zhang F; Song S; Chen S; Ren Z
    Research (Wash D C); 2020; 2020():3976278. PubMed ID: 32159161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation.
    Liu R; Wang Y; Liu D; Zou Y; Wang S
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28589657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting.
    Wang Y; Yan D; El Hankari S; Zou Y; Wang S
    Adv Sci (Weinh); 2018 Aug; 5(8):1800064. PubMed ID: 30128233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution.
    Yu L; Yang JF; Guan BY; Lu Y; Lou XWD
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):172-176. PubMed ID: 29178355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ostwald Ripening Driven Exfoliation to Ultrathin Layered Double Hydroxides Nanosheets for Enhanced Oxygen Evolution Reaction.
    Chen B; Zhang Z; Kim S; Lee S; Lee J; Kim W; Yong K
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44518-44526. PubMed ID: 30508374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts.
    Wang Y; Zhang Y; Liu Z; Xie C; Feng S; Liu D; Shao M; Wang S
    Angew Chem Int Ed Engl; 2017 May; 56(21):5867-5871. PubMed ID: 28429388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.
    Wang Y; Qiao M; Li Y; Wang S
    Small; 2018 Apr; 14(17):e1800136. PubMed ID: 29611304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Metal Combinations on the Electrocatalytic Properties of Transition-Metal-Based Layered Double Hydroxides for Water Oxidation: A Perspective with Insights.
    Wang Z; Long X; Yang S
    ACS Omega; 2018 Dec; 3(12):16529-16541. PubMed ID: 31458286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid large-scale synthesis of ultrathin NiFe-layered double hydroxide nanosheets with tunable structures as robust oxygen evolution electrocatalysts.
    Hou C; Cui Z; Zhang S; Yang W; Gao H; Luo X
    RSC Adv; 2021 Nov; 11(59):37624-37630. PubMed ID: 35496396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review.
    Gao R; Zhu J; Yan D
    Nanoscale; 2021 Aug; 13(32):13593-13603. PubMed ID: 34477633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3d-Transition Metal Layered Double Hydroxides.
    Dionigi F; Zhu J; Zeng Z; Merzdorf T; Sarodnik H; Gliech M; Pan L; Li WX; Greeley J; Strasser P
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14446-14457. PubMed ID: 33844879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.