These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36867088)

  • 1. Versatile CO
    Piccirilli L; Rabell B; Padilla R; Riisager A; Das S; Nielsen M
    J Am Chem Soc; 2023 Mar; 145(10):5655-5663. PubMed ID: 36867088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic Analysis of Metal-Ligand Cooperativity of PNP Ru Complexes: Implications for CO
    Mathis CL; Geary J; Ardon Y; Reese MS; Philliber MA; VanderLinden RT; Saouma CT
    J Am Chem Soc; 2019 Sep; 141(36):14317-14328. PubMed ID: 31390860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Rh- and Ir-Based Catalysts for CO
    Fidalgo J; Ruiz-Castañeda M; García-Herbosa G; Carbayo A; Jalón FA; Rodríguez AM; Manzano BR; Espino G
    Inorg Chem; 2018 Nov; 57(22):14186-14198. PubMed ID: 30395446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Semi-Water-Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel.
    Qadir MI; Castegnaro MV; Selau FF; Samperi M; Fernandes JA; Morais J; Dupont J
    ChemSusChem; 2020 Apr; 13(7):1817-1824. PubMed ID: 32022428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.
    Zell T; Milstein D
    Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bulky PNP Ligands Blocking Metal-Ligand Cooperation Allow for Isolation of Ru(0), and Lead to Catalytically Active Ru Complexes in Acceptorless Alcohol Dehydrogenation.
    Deolka S; Fayzullin RR; Khaskin E
    Chemistry; 2022 Jan; 28(4):e202103778. PubMed ID: 34741487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface functionalized highly porous date seed derived activated carbon and MoS
    Bharath G; Rambabu K; Morajkar PP; Jayaraman R; Theerthagiri J; Lee SJ; Choi MY; Banat F
    J Hazard Mater; 2021 May; 409():124980. PubMed ID: 33418290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Developments in Reversible CO
    Kushwaha S; Parthiban J; Singh SK
    ACS Omega; 2023 Oct; 8(42):38773-38793. PubMed ID: 37901502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Ru(0) particles: arene hydrogenation catalysts in imidazolium ionic liquids.
    Prechtl MH; Scariot M; Scholten JD; Machado G; Teixeira SR; Dupont J
    Inorg Chem; 2008 Oct; 47(19):8995-9001. PubMed ID: 18759430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO
    Scott M; Blas Molinos B; Westhues C; Franciò G; Leitner W
    ChemSusChem; 2017 Mar; 10(6):1085-1093. PubMed ID: 28103428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Hydrogenation of CO
    Louis Anandaraj SJ; Kang L; DeBeer S; Bordet A; Leitner W
    Small; 2023 May; 19(18):e2206806. PubMed ID: 36709493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation control of Ru and Ir nanoparticles by tunable aryl alkyl imidazolium ionic liquids.
    Schmolke L; Lerch S; Bülow M; Siebels M; Schmitz A; Thomas J; Dehm G; Held C; Strassner T; Janiak C
    Nanoscale; 2019 Mar; 11(9):4073-4082. PubMed ID: 30778483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium-catalyzed dehydrogenation of ammonia boranes.
    Blaquiere N; Diallo-Garcia S; Gorelsky SI; Black DA; Fagnou K
    J Am Chem Soc; 2008 Oct; 130(43):14034-5. PubMed ID: 18831582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP-Ir or PNN-Ru pincer complexes: crucial role of proton-transfer shuttles in the PNP-Ir system.
    Qu S; Dang Y; Song C; Wen M; Huang KW; Wang ZX
    J Am Chem Soc; 2014 Apr; 136(13):4974-91. PubMed ID: 24611673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.