These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3686729)

  • 1. Pressure waveforms generated by a Dornier extra-corporeal shock-wave lithotripter.
    Coleman AJ; Saunders JE; Preston RC; Bacon DR
    Ultrasound Med Biol; 1987 Oct; 13(10):651-7. PubMed ID: 3686729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental shock wave generator for lithotripsy studies.
    Coleman AJ; Saunders JE; Choi MJ
    Phys Med Biol; 1989 Nov; 34(11):1733-42. PubMed ID: 2587631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1998 Oct; 104(4):2517-24. PubMed ID: 10491712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of lithotripter focal width on stone comminution in shock wave lithotripsy.
    Qin J; Simmons WN; Sankin G; Zhong P
    J Acoust Soc Am; 2010 Apr; 127(4):2635-45. PubMed ID: 20370044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic performance and clinical use of a fibreoptic hydrophone.
    Coleman AJ; Draguioti E; Tiptaf R; Shotri N; Saunders JE
    Ultrasound Med Biol; 1998 Jan; 24(1):143-51. PubMed ID: 9483782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
    Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S
    BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beamwidth measurement of individual lithotripter shock waves.
    Kreider W; Bailey MR; Ketterling JA
    J Acoust Soc Am; 2009 Feb; 125(2):1240-5. PubMed ID: 19206897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study.
    Zhong P; Lin H; Xi X; Zhu S; Bhogte ES
    J Acoust Soc Am; 1999 Mar; 105(3):1997-2009. PubMed ID: 10089617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters.
    Coleman AJ; Saunders JE
    Ultrasound Med Biol; 1989; 15(3):213-27. PubMed ID: 2741250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo pressure measurements of lithotripsy shock waves in pigs.
    Cleveland RO; Lifshitz DA; Connors BA; Evan AP; Willis LR; Crum LA
    Ultrasound Med Biol; 1998 Feb; 24(2):293-306. PubMed ID: 9550188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter.
    Coleman AJ; Choi MJ; Saunders JE
    Ultrasound Med Biol; 1991; 17(3):245-55. PubMed ID: 1887510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Extracorporeal shock wave lithotripsy using Dornier modified HM3 lithotripter comparison with the results by Dornier HM3 lithotripter].
    Sugiyama T; Itho M; Katho N; Sahashi M; Watanabe J; Yamada S; Kamihira O; Mizutani K; Ono Y
    Nihon Hinyokika Gakkai Zasshi; 1991 Mar; 82(3):462-6. PubMed ID: 2072608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear.
    Lokhandwalla M; McAteer JA; Williams JC; Sturtevant B
    Phys Med Biol; 2001 Apr; 46(4):1245-64. PubMed ID: 11324963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of an experimental electrohydraulic discharge device for extracorporeal shock wave lithotripsy: Pressure field of sparker array.
    Li G; Connors BA; Schaefer RB; Gallagher JJ; Evan AP
    J Acoust Soc Am; 2017 Nov; 142(5):3147. PubMed ID: 29195423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A performance analysis of an extracorporeal shock wave lithotripter: spatial pressure distribution and the effects of lithotripter voltage, electrode life, and tissue attenuation.
    Monaghan P; Gilbert JL; Prystowsky JB
    J Stone Dis; 1992 Oct; 4(4):289-300. PubMed ID: 10147810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array.
    Alibakhshi MA; Kracht JM; Cleveland RO; Filoux E; Ketterling JA
    J Acoust Soc Am; 2013 May; 133(5):3176-85. PubMed ID: 23654419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter.
    Coleman AJ; Whitlock M; Leighton T; Saunders JE
    Phys Med Biol; 1993 Nov; 38(11):1545-60. PubMed ID: 8272431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.