BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36868265)

  • 1. Photoplethysmography waveform analysis for classification of vascular tone and arterial blood pressure: Study based on neural networks.
    Echeverría NI; Scandurra AG; Acosta CM; Meschino GJ; Suarez Sipmann F; Tusman G
    Rev Esp Anestesiol Reanim (Engl Ed); 2023 Apr; 70(4):209-217. PubMed ID: 36868265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoplethysmographic characterization of vascular tone mediated changes in arterial pressure: an observational study.
    Tusman G; Acosta CM; Pulletz S; Böhm SH; Scandurra A; Arca JM; Madorno M; Sipmann FS
    J Clin Monit Comput; 2019 Oct; 33(5):815-824. PubMed ID: 30554338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.
    Pal R; Rudas A; Kim S; Chiang JN; Braney A; Cannesson M
    medRxiv; 2024 Mar; ():. PubMed ID: 38496617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.
    Pal R; Rudas A; Kim S; Chiang JN; Barney A; Cannesson M
    Comput Methods Programs Biomed; 2024 Jun; 254():108283. PubMed ID: 38901273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.
    Kim DK; Kim YT; Kim H; Kim DJ
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3697-3707. PubMed ID: 35511844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel CS-NET architecture based on the unification of CNN, SVM and super-resolution spectrogram to monitor and classify blood pressure using photoplethysmography.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Methods Programs Biomed; 2023 Oct; 240():107716. PubMed ID: 37542944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation.
    Zhou Y; Tan Z; Liu Y; Cheng H
    Physiol Meas; 2023 Sep; 44(7):. PubMed ID: 37402386
    [No Abstract]   [Full Text] [Related]  

  • 9. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients.
    Alian AA; Atteya G; Gaal D; Golembeski T; Smith BG; Dai F; Silverman DG; Shelley K
    Anesth Analg; 2016 Aug; 123(2):346-56. PubMed ID: 27284998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.
    Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X
    Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The photoplethysmographic amplitude to pulse pressure ratio can track sudden changes in vascular compliance and resistance during liver graft reperfusion: A beat-to-beat analysis.
    Kim WJ; Kim JW; Moon YJ; Kim SH; Hwang GS; Shin WJ
    Medicine (Baltimore); 2017 Jun; 96(22):e7045. PubMed ID: 28562562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time estimation of mean arterial blood pressure based on photoplethysmography dicrotic notch and perfusion index. A pilot study.
    Joachim J; Coutrot M; Millasseau S; Matéo J; Mebazaa A; Gayat E; Vallée F
    J Clin Monit Comput; 2021 Apr; 35(2):395-404. PubMed ID: 32078111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On detection of spontaneous pulse by photoplethysmography in cardiopulmonary resuscitation.
    Hubner P; Wijshoff RWCGR; Muehlsteff J; Wallmüller C; Warenits AM; Magnet IAM; Nammi K; Russell JK; Sterz F
    Am J Emerg Med; 2020 Mar; 38(3):526-533. PubMed ID: 31138516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using CNN and HHT to Predict Blood Pressure Level Based on Photoplethysmography and Its Derivatives.
    Sun X; Zhou L; Chang S; Liu Z
    Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33924324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of Arterial Blood Pressure Waveform from Photoplethysmogram Signal using Linear Transfer Function Approach.
    Dash A; Ghosh N; Patra A; Choudhury AD
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2691-2694. PubMed ID: 33018561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of cerebral blood flow velocity during breath-hold challenge using artificial neural networks.
    Al-Abed MA; Al-Bashir AK; Al-Rawashdeh A; Alex RM; Zhang R; Watenpaugh DE; Behbehani K
    Comput Biol Med; 2019 Dec; 115():103508. PubMed ID: 31698237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency domain analysis of photoplethysmographic and arterial pressure waveforms for assessing hemodynamics in children with congenital heart surgery.
    Jang HY; Song IK; Kim SH; Shin WJ
    Korean J Anesthesiol; 2024 Apr; 77(2):205-216. PubMed ID: 38204171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized deep neural network models for blood pressure classification using Fourier analysis-based time-frequency spectrogram of photoplethysmography signal.
    Pankaj ; Kumar A; Kumar M; Komaragiri R
    Biomed Eng Lett; 2023 Nov; 13(4):739-750. PubMed ID: 37872982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study.
    Hickey M; Phillips JP; Kyriacou PA
    J Clin Monit Comput; 2016 Oct; 30(5):727-36. PubMed ID: 26318315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification.
    Liang Y; Chen Z; Ward R; Elgendi M
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30373211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.