These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study. Yamagami R; Kayedkhordeh M; Mathews DH; Bevilacqua PC Nucleic Acids Res; 2019 Jan; 47(1):29-42. PubMed ID: 30462314 [TBL] [Abstract][Full Text] [Related]
4. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures. Zandi K; Butler G; Kharma N Front Genet; 2016; 7():129. PubMed ID: 27499762 [TBL] [Abstract][Full Text] [Related]
5. Inverse RNA Folding Workflow to Design and Test Ribozymes that Include Pseudoknots. Kayedkhordeh M; Yamagami R; Bevilacqua PC; Mathews DH Methods Mol Biol; 2021; 2167():113-143. PubMed ID: 32712918 [TBL] [Abstract][Full Text] [Related]
6. An allosteric ribozyme generator and an inverse folding ribozyme generator: Two computer programs for automated computational design of oligonucleotide-sensing allosteric hammerhead ribozymes with YES Boolean logic function based on experimentally validated algorithms. Kaloudas D; Penchovsky R Comput Biol Med; 2022 Jun; 145():105469. PubMed ID: 35398809 [TBL] [Abstract][Full Text] [Related]
7. Pseudoknot interaction-mediated activation of type I hammerhead ribozyme: a new class of gene-therapeutic agents. Kuriyama M; Kondo Y; Tanaka Y Nucleosides Nucleotides Nucleic Acids; 2014; 33(7):466-80. PubMed ID: 24972011 [TBL] [Abstract][Full Text] [Related]
8. Minimal Hammerhead Ribozymes with Uncompromised Catalytic Activity. O'Rourke SM; Estell W; Scott WG J Mol Biol; 2015 Jul; 427(14):2340-7. PubMed ID: 25981451 [TBL] [Abstract][Full Text] [Related]
9. The tolerance to exchanges of the Watson Crick base pair in the hammerhead ribozyme core is determined by surrounding elements. Przybilski R; Hammann C RNA; 2007 Oct; 13(10):1625-30. PubMed ID: 17666711 [TBL] [Abstract][Full Text] [Related]
12. Retrozymes are a unique family of non-autonomous retrotransposons with hammerhead ribozymes that propagate in plants through circular RNAs. Cervera A; Urbina D; de la Peña M Genome Biol; 2016 Jun; 17(1):135. PubMed ID: 27339130 [TBL] [Abstract][Full Text] [Related]
14. Multi-objective genetic algorithm for pseudoknotted RNA sequence design. Taneda A Front Genet; 2012; 3():36. PubMed ID: 22558001 [TBL] [Abstract][Full Text] [Related]
15. Novel and efficient RNA secondary structure prediction using hierarchical folding. Jabbari H; Condon A; Zhao S J Comput Biol; 2008 Mar; 15(2):139-63. PubMed ID: 18312147 [TBL] [Abstract][Full Text] [Related]
16. A three-nucleotide helix I is sufficient for full activity of a hammerhead ribozyme: advantages of an asymmetric design. Tabler M; Homann M; Tzortzakaki S; Sczakiel G Nucleic Acids Res; 1994 Sep; 22(19):3958-65. PubMed ID: 7937118 [TBL] [Abstract][Full Text] [Related]
17. A structural analysis of in vitro catalytic activities of hammerhead ribozymes. Shao Y; Wu S; Chan CY; Klapper JR; Schneider E; Ding Y BMC Bioinformatics; 2007 Nov; 8():469. PubMed ID: 18053134 [TBL] [Abstract][Full Text] [Related]
18. Computational Design of Allosteric Ribozymes via Genetic Algorithms. Kaloudas D; Pavlova N; Penchovsky R Methods Mol Biol; 2024; 2822():443-469. PubMed ID: 38907934 [TBL] [Abstract][Full Text] [Related]
19. Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor. Komatsu Y; Yamashita S; Kazama N; Nobuoka K; Ohtsuka E J Mol Biol; 2000 Jun; 299(5):1231-43. PubMed ID: 10873448 [TBL] [Abstract][Full Text] [Related]
20. Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes. Diegelman AM; Kool ET Nucleic Acids Res; 1998 Jul; 26(13):3235-41. PubMed ID: 9628924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]