BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36869492)

  • 1. Degradation mechanism of aflatoxin B1 and aflatoxin G1 by salt tolerant Bacillus albus YUN5 isolated from 'doenjang', a traditional Korean food.
    Kumar V; Bahuguna A; Lee JS; Sood A; Han SS; Chun HS; Kim M
    Food Res Int; 2023 Mar; 165():112479. PubMed ID: 36869492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aflatoxin Production by Aspergillus parasiticus and Its Stability During the Manufacture of Korean Soy Paste (Doenjang) and Soy Sauce (Kanjang) by Traditional Method.
    Park KY; Lee KB; Bullerman LB
    J Food Prot; 1988 Dec; 51(12):938-944. PubMed ID: 30991572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of aflatoxin by bacterial species isolated from poultry farms.
    Ali S; Hassan M; Essam T; Ibrahim MA; Al-Amry K
    Toxicon; 2021 May; 195():7-16. PubMed ID: 33610638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aflatoxin Reduction and Retardation of Aflatoxin Production by Microorganisms in
    Kumar V; Bahuguna A; Ramalingam S; Lee JS; Han SS; Chun HS; Kim M
    J Fungi (Basel); 2022 Feb; 8(2):. PubMed ID: 35205943
    [No Abstract]   [Full Text] [Related]  

  • 5. Degradation of Aflatoxins B
    Maxwell LA; Callicott KA; Bandyopadhyay R; Mehl HL; Orbach MJ; Cotty PJ
    Plant Dis; 2021 Sep; 105(9):2343-2350. PubMed ID: 33754847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular docking studies and in vitro degradation of four aflatoxins (AFB
    Liu Y; Mao H; Hu C; Tron T; Lin J; Wang J; Sun B
    J Food Sci; 2020 Apr; 85(4):1353-1360. PubMed ID: 32220140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and mechanism of aflatoxin degradation by a novel strain of
    Yue X; Ren X; Fu J; Wei N; Altomare C; Haidukowski M; Logrieco AF; Zhang Q; Li P
    Front Microbiol; 2022; 13():1003039. PubMed ID: 36312918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncommon occurrence ratios of aflatoxin B1, B 2, G 1, and G 2 in maize and groundnuts from Malawi.
    Matumba L; Sulyok M; Njoroge SM; Njumbe Ediage E; Van Poucke C; De Saeger S; Krska R
    Mycotoxin Res; 2015 Feb; 31(1):57-62. PubMed ID: 25194830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aflatoxin levels and exposure assessment of Spanish infant cereals.
    Hernández-Martínez R; Navarro-Blasco I
    Food Addit Contam Part B Surveill; 2010; 3(4):275-88. PubMed ID: 24779628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of Aflatoxin B
    Xue G; Qu Y; Wu D; Huang S; Che Y; Yu J; Song P
    Toxins (Basel); 2023 Jan; 15(1):. PubMed ID: 36668884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplified Synthesis and Stability Assessment of Aflatoxin B
    Renaud JB; Walsh JP; Sumarah MW
    Toxins (Basel); 2022 Jan; 14(1):. PubMed ID: 35051035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of UV irradiation on aflatoxin reduction: a cytotoxicity evaluation study using human hepatoma cell line.
    Patras A; Julakanti S; Yannam S; Bansode RR; Burns M; Vergne MJ
    Mycotoxin Res; 2017 Nov; 33(4):343-350. PubMed ID: 28844113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an aflatoxin G1-serum albumin adduct and its relevance to the measurement of human exposure to aflatoxins.
    Sabbioni G; Wild CP
    Carcinogenesis; 1991 Jan; 12(1):97-103. PubMed ID: 1899057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of aflatoxin B1 and aflatoxin G1 binding to cellular macromolecules in vitro, in vivo and after peracid oxidation; characterisation of the major nucleic acid adducts.
    Garner RC; Martin CN; Smith JR; Coles BF; Tolson MR
    Chem Biol Interact; 1979 Jun; 26(1):57-73. PubMed ID: 466744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Characterization of the Interaction of Aflatoxins B1 and G1 with Calf Thymus DNA In Vitro.
    Ma L; Wang J; Zhang Y
    Toxins (Basel); 2017 Jul; 9(7):. PubMed ID: 28671585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthetic relationship among aflatoxins B1, B2, G1, and G2.
    Yabe K; Ando Y; Hamasaki T
    Appl Environ Microbiol; 1988 Aug; 54(8):2101-6. PubMed ID: 3140727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presence of aiiA homologue genes encoding for N-Acyl homoserine lactone-degrading enzyme in aflatoxin B
    González Pereyra ML; Martínez MP; Cavaglieri LR
    Food Chem Toxicol; 2019 Feb; 124():316-323. PubMed ID: 30557671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of aflatoxin B
    Suresh G; Cabezudo I; Pulicharla R; Cuprys A; Rouissi T; Brar SK
    Res Vet Sci; 2020 Dec; 133():85-91. PubMed ID: 32957062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthetic origin of aflatoxin G1: confirmation of sterigmatocystin and lack of confirmation of aflatoxin B1 as precursors.
    Henderberg A; Bennett JW; Lee LS
    J Gen Microbiol; 1988 Mar; 134(3):661-7. PubMed ID: 3141572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of rates of enzymatic oxidation of aflatoxin B1, aflatoxin G1, and sterigmatocystin and activities of the epoxides in forming guanyl-N7 adducts and inducing different genetic responses.
    Baertschi SW; Raney KD; Shimada T; Harris TM; Guengerich FP
    Chem Res Toxicol; 1989; 2(2):114-2. PubMed ID: 2519710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.