BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36869685)

  • 1. A Model Template Approach for Rapid Evaluation and Application of Physiologically Based Pharmacokinetic Models: Extension to Volatile Organic Compounds.
    Bernstein AS; Prasad B; Schlosser PM; Kapraun DF
    Toxicol Sci; 2023 Mar; ():. PubMed ID: 36869685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Model Template Approach for Rapid Evaluation and Application of Physiologically Based Pharmacokinetic Models for Use in Human Health Risk Assessments: A Case Study on Per- and Polyfluoroalkyl Substances.
    Bernstein AS; Kapraun DF; Schlosser PM
    Toxicol Sci; 2021 Aug; 182(2):215-228. PubMed ID: 34077538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational research to develop a human PBPK models tool kit-volatile organic compounds (VOCs).
    Mumtaz MM; Ray M; Crowell SR; Keys D; Fisher J; Ruiz P
    J Toxicol Environ Health A; 2012; 75(1):6-24. PubMed ID: 22047160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrahepatic metabolism by CYP2E1 in PBPK modeling of lipophilic volatile organic chemicals: impacts on metabolic parameter estimation and prediction of dose metrics.
    Yoon M; Madden MC; Barton HA
    J Toxicol Environ Health A; 2007 Sep; 70(18):1527-41. PubMed ID: 17710613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distributed parameter physiologically-based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds.
    Roy A; Weisel CP; Lioy PJ; Georgopoulos PG
    Risk Anal; 1996 Apr; 16(2):147-60. PubMed ID: 8638037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicokinetic modeling and its applications in chemical risk assessment.
    Andersen ME
    Toxicol Lett; 2003 Feb; 138(1-2):9-27. PubMed ID: 12559690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a human Physiologically Based Pharmacokinetic (PBPK) Toolkit for environmental pollutants.
    Ruiz P; Ray M; Fisher J; Mumtaz M
    Int J Mol Sci; 2011; 12(11):7469-80. PubMed ID: 22174611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data.
    Batterman S; Su FC; Li S; Mukherjee B; Jia C;
    Res Rep Health Eff Inst; 2014 Jun; (181):3-63. PubMed ID: 25145040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PBPK model reporting template for chemical risk assessment applications.
    Tan YM; Chan M; Chukwudebe A; Domoradzki J; Fisher J; Hack CE; Hinderliter P; Hirasawa K; Leonard J; Lumen A; Paini A; Qian H; Ruiz P; Wambaugh J; Zhang F; Embry M
    Regul Toxicol Pharmacol; 2020 Aug; 115():104691. PubMed ID: 32502513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing interaction thresholds for trichloroethylene in combination with tetrachloroethylene and 1,1,1-trichloroethane using gas uptake studies and PBPK modeling.
    Dobrev ID; Andersen ME; Yang RS
    Arch Toxicol; 2001 May; 75(3):134-44. PubMed ID: 11409535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-property relationships for physiologically based pharmacokinetic modeling of volatile organic chemicals in rats.
    BĂ©liveau M; Tardif R; Krishnan K
    Toxicol Appl Pharmacol; 2003 Jun; 189(3):221-32. PubMed ID: 12791307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene.
    Liao KH; Tan YM; Clewell HJ
    Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles.
    Peters SA
    Clin Pharmacokinet; 2008; 47(4):245-59. PubMed ID: 18336054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.
    Aylward LL; Kirman CR; Blount BC; Hays SM
    Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat.
    Price K; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):107-28. PubMed ID: 21391144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetics for regulatory risk analysis: the case of trichloroethylene.
    Bogen KT
    Regul Toxicol Pharmacol; 1988 Dec; 8(4):447-66. PubMed ID: 3222486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quality Assurance of PBPK Modeling Platforms and Guidance on Building, Evaluating, Verifying and Applying PBPK Models Prudently under the Umbrella of Qualification: Why, When, What, How and By Whom?
    Frechen S; Rostami-Hodjegan A
    Pharm Res; 2022 Aug; 39(8):1733-1748. PubMed ID: 35445350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a probability-bounds approach.
    Nong A; Krishnan K
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):93-101. PubMed ID: 17367907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification.
    Sager JE; Yu J; Ragueneau-Majlessi I; Isoherranen N
    Drug Metab Dispos; 2015 Nov; 43(11):1823-37. PubMed ID: 26296709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.