These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36869685)

  • 21. Physiologically-based pharmacokinetic and toxicokinetic models in cancer risk assessment.
    Krishnan K; Johanson G
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2005; 23(1):31-53. PubMed ID: 16291521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global optimization of the Michaelis-Menten parameters using physiologically-based pharmacokinetic (PBPK) modeling and chloroform vapor uptake data in F344 rats.
    Evans MV; Eklund CR; Williams DN; Sey YM; Simmons JE
    Inhal Toxicol; 2020 Feb; 32(3):97-109. PubMed ID: 32241199
    [No Abstract]   [Full Text] [Related]  

  • 23. Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study.
    Yoon M; Kedderis GL; Yan GZ; Clewell HJ
    Toxicology; 2015 Jun; 332():52-66. PubMed ID: 24863738
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Isoherranen N
    Drug Metab Dispos; 2024 Feb; ():. PubMed ID: 38326033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of physiologically based pharmacokinetic and physiologically based pharmacodynamic models for applications in toxicology and risk assessment.
    Andersen ME
    Toxicol Lett; 1995 Sep; 79(1-3):35-44. PubMed ID: 7570672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiologically based pharmacokinetic models: mathematical fundamentals and simulation implementations.
    Hoang K
    Toxicol Lett; 1995 Sep; 79(1-3):99-106. PubMed ID: 7570678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling.
    Chou WC; Lin Z
    Toxicol Sci; 2023 Jan; 191(1):1-14. PubMed ID: 36156156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hybrid computational fluid dynamics and physiologically based pharmacokinetic model for comparison of predicted tissue concentrations of acrylic acid and other vapors in the rat and human nasal cavities following inhalation exposure.
    Frederick CB; Gentry PR; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS
    Inhal Toxicol; 2001 May; 13(5):359-76. PubMed ID: 11295868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry comparisons of ester vapors.
    Frederick CB; Lomax LG; Black KA; Finch L; Scribner HE; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB
    Toxicol Appl Pharmacol; 2002 Aug; 183(1):23-40. PubMed ID: 12217639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Physiologically Based Pharmacokinetic Model for Naphthalene With Inhalation and Skin Routes of Exposure.
    Kapraun DF; Schlosser PM; Nylander-French LA; Kim D; Yost EE; Druwe IL
    Toxicol Sci; 2020 Oct; 177(2):377-391. PubMed ID: 32687177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and functional pharmacokinetic analogs for physiologically based pharmacokinetic (PBPK) model evaluation.
    Ellison CA
    Regul Toxicol Pharmacol; 2018 Nov; 99():61-77. PubMed ID: 30201539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model qualification of the PK-SimĀ® pediatric module for pediatric exposure assessment of CYP450 metabolized compounds.
    Yun YE; Edginton AN
    J Toxicol Environ Health A; 2019; 82(14):789-814. PubMed ID: 31405354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure.
    Boerleider RZ; Olie JD; van Eijkeren JC; Bos PM; Hof BG; de Vries I; Bessems JG; Meulenbelt J; Hunault CC
    Toxicol Lett; 2015 Jan; 232(1):21-7. PubMed ID: 25455448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steady-state solutions to PBPK models and their applications to risk assessment I: Route-to-route extrapolation of volatile chemicals.
    Chiu WA; White P
    Risk Anal; 2006 Jun; 26(3):769-80. PubMed ID: 16834633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QSARs for PBPK modelling of environmental contaminants.
    Peyret T; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):129-69. PubMed ID: 21391145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of PBPK modeling in support of the derivation of toxicity reference values for 1,1,1-trichloroethane.
    Lu Y; Rieth S; Lohitnavy M; Dennison J; El-Masri H; Barton HA; Bruckner J; Yang RS
    Regul Toxicol Pharmacol; 2008 Mar; 50(2):249-60. PubMed ID: 18226845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiologically based pharmacokinetic model use in risk assessment--Why being published is not enough.
    McLanahan ED; El-Masri HA; Sweeney LM; Kopylev LY; Clewell HJ; Wambaugh JF; Schlosser PM
    Toxicol Sci; 2012 Mar; 126(1):5-15. PubMed ID: 22045031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of an integrated multi-species and multi-dose route PBPK model for volatile methyl siloxanes - D4 and D5.
    McMullin TS; Yang Y; Campbell J; Clewell HJ; Plotzke K; Andersen ME
    Regul Toxicol Pharmacol; 2016 Feb; 74 Suppl():S1-13. PubMed ID: 26724268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporation of
    Clewell HJ; Campbell JL; Van Landingham C; Franzen A; Yoon M; Dodd DE; Andersen ME; Gentry PR
    Inhal Toxicol; 2019; 31(13-14):468-483. PubMed ID: 31992090
    [No Abstract]   [Full Text] [Related]  

  • 40. Whole body pharmacokinetic models.
    Nestorov I
    Clin Pharmacokinet; 2003; 42(10):883-908. PubMed ID: 12885263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.