These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36869777)
1. Metabolic engineering of Saccharomyces cerevisiae for glycerol utilization. Yu Z; Chang Z; Lu Y; Xiao H FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36869777 [TBL] [Abstract][Full Text] [Related]
2. Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis. Kawai K; Kanesaki Y; Yoshikawa H; Hirasawa T J Biosci Bioeng; 2019 Aug; 128(2):162-169. PubMed ID: 30803782 [TBL] [Abstract][Full Text] [Related]
3. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533 [TBL] [Abstract][Full Text] [Related]
4. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. Hou J; Qiu C; Shen Y; Li H; Bao X FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production. Kim SJ; Kim JW; Lee YG; Park YC; Seo JH Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883 [TBL] [Abstract][Full Text] [Related]
6. 100 Years Later, What Is New in Glycerol Bioproduction? Semkiv MV; Ruchala J; Dmytruk KV; Sibirny AA Trends Biotechnol; 2020 Aug; 38(8):907-916. PubMed ID: 32584768 [TBL] [Abstract][Full Text] [Related]
7. Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Swinnen S; Ho PW; Klein M; Nevoigt E Metab Eng; 2016 Jul; 36():68-79. PubMed ID: 26971668 [TBL] [Abstract][Full Text] [Related]
8. Engineering and transcriptome study of Saccharomyces cerevisiae to produce ginsenoside compound K by glycerol. Zhang C; Tian J; Zhang J; Liu R; Zhao X; Lu W Biotechnol J; 2024 Feb; 19(2):e2300383. PubMed ID: 38403397 [TBL] [Abstract][Full Text] [Related]
9. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Ida Y; Hirasawa T; Furusawa C; Shimizu H Appl Microbiol Biotechnol; 2013 Jun; 97(11):4811-9. PubMed ID: 23435983 [TBL] [Abstract][Full Text] [Related]
10. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. Gottardi M; Reifenrath M; Boles E; Tripp J FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489 [TBL] [Abstract][Full Text] [Related]
11. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. Ho PW; Klein M; Futschik M; Nevoigt E FEMS Yeast Res; 2018 May; 18(3):. PubMed ID: 29481685 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Baek SH; Kwon EY; Kim YH; Hahn JS Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Wang S; Zhao F; Yang M; Lin Y; Han S Crit Rev Biotechnol; 2024 Mar; 44(2):163-190. PubMed ID: 36596577 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Yu KO; Jung J; Kim SW; Park CH; Han SO Biotechnol Bioeng; 2012 Jan; 109(1):110-5. PubMed ID: 21858787 [TBL] [Abstract][Full Text] [Related]
16. Metabolic Engineering for Improved Fermentation of L-Arabinose. Ye S; Kim JW; Kim SR J Microbiol Biotechnol; 2019 Mar; 29(3):339-346. PubMed ID: 30786700 [TBL] [Abstract][Full Text] [Related]
17. Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Klein M; Carrillo M; Xiberras J; Islam ZU; Swinnen S; Nevoigt E Metab Eng; 2016 Nov; 38():464-472. PubMed ID: 27750033 [TBL] [Abstract][Full Text] [Related]
18. Improving ethanol yields in sugarcane molasses fermentation by engineering the high osmolarity glycerol pathway while maintaining osmotolerance in Saccharomyces cerevisiae. Jagtap RS; Mahajan DM; Mistry SR; Bilaiya M; Singh RK; Jain R Appl Microbiol Biotechnol; 2019 Jan; 103(2):1031-1042. PubMed ID: 30488283 [TBL] [Abstract][Full Text] [Related]
19. Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. Wang C; Shen Y; Zhang Y; Suo F; Hou J; Bao X Biomed Res Int; 2013; 2013():461204. PubMed ID: 24195072 [TBL] [Abstract][Full Text] [Related]
20. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation. Dong SJ; Lin XH; Li H Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]