BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36869843)

  • 1. Auto-Kla: a novel web server to discriminate lysine lactylation sites using automated machine learning.
    Lai FL; Gao F
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepKla: An attention mechanism-based deep neural network for protein lysine lactylation site prediction.
    Lv H; Dao FY; Lin H
    Imeta; 2022 Mar; 1(1):e11. PubMed ID: 38867734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FSL-Kla: A few-shot learning-based multi-feature hybrid system for lactylation site prediction.
    Jiang P; Ning W; Shi Y; Liu C; Mo S; Zhou H; Liu K; Guo Y
    Comput Struct Biotechnol J; 2021; 19():4497-4509. PubMed ID: 34471495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactylation prediction models based on protein sequence and structural feature fusion.
    Yang YH; Yang JT; Liu JF
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic identification of the lysine lactylation in the protozoan parasite Toxoplasma gondii.
    Zhao W; Yu H; Liu X; Wang T; Yao Y; Zhou Q; Zheng X; Tan F
    Parasit Vectors; 2022 May; 15(1):180. PubMed ID: 35610722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Analysis of Lysine Lactylation in the Plant Fungal Pathogen
    Gao M; Zhang N; Liang W
    Front Microbiol; 2020; 11():594743. PubMed ID: 33193272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of lysine-lactylated substrates in gastric cancer cells.
    Yang D; Yin J; Shan L; Yi X; Zhang W; Ding Y
    iScience; 2022 Jul; 25(7):104630. PubMed ID: 35800753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactylome analyses suggest systematic lysine-lactylated substrates in oral squamous cell carcinoma under normoxia and hypoxia.
    Song F; Hou C; Huang Y; Liang J; Cai H; Tian G; Jiang Y; Wang Z; Hou J
    Cell Signal; 2024 Aug; 120():111228. PubMed ID: 38750680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YiaC and CobB regulate lysine lactylation in Escherichia coli.
    Dong H; Zhang J; Zhang H; Han Y; Lu C; Chen C; Tan X; Wang S; Bai X; Zhai G; Tian S; Zhang T; Cheng Z; Li E; Xu L; Zhang K
    Nat Commun; 2022 Nov; 13(1):6628. PubMed ID: 36333310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework.
    Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BERT-Kcr: prediction of lysine crotonylation sites by a transfer learning method with pre-trained BERT models.
    Qiao Y; Zhu X; Gong H
    Bioinformatics; 2022 Jan; 38(3):648-654. PubMed ID: 34643684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the Atlas of Post-Translational Modification in Sugarcane.
    Wu Q; Li Z; Yang J; Xu F; Fu X; Xu L; You C; Wang D; Su Y; Que Y
    J Agric Food Chem; 2023 Jul; 71(26):10004-10017. PubMed ID: 37339007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of newly identified lysine lactylation in cancer.
    Gao X; Pang C; Fan Z; Wang Y; Duan Y; Zhan H
    Cancer Lett; 2024 Apr; 587():216680. PubMed ID: 38346584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the effect of protein lysine lactylation modification in macrophages on inhibiting periodontitis in rats.
    Liu X; Wang J; Lao M; Liu F; Zhu H; Man K; Zhang J
    J Periodontol; 2024 Jan; 95(1):50-63. PubMed ID: 37436722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning.
    Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Profiling of Lysine Acetylation and Lactylation in Kupffer Cells.
    Sung E; Sim H; Cho YC; Lee W; Bae JS; Tan M; Lee S
    J Proteome Res; 2023 Dec; 22(12):3683-3691. PubMed ID: 37897433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global profiling of lysine lactylation in human lungs.
    Yang YH; Wang QC; Kong J; Yang JT; Liu JF
    Proteomics; 2023 Aug; 23(15):e2200437. PubMed ID: 37170646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences.
    Chen L; Chen Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38066710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.