These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36870167)
1. A wavelet neural operator based elastography for localization and quantification of tumors. Tripura T; Awasthi A; Roy S; Chakraborty S Comput Methods Programs Biomed; 2023 Apr; 232():107436. PubMed ID: 36870167 [TBL] [Abstract][Full Text] [Related]
2. Learning hidden elasticity with deep neural networks. Chen CT; Gu GX Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326258 [TBL] [Abstract][Full Text] [Related]
3. [Reconstruction of elasticity modulus distribution base on semi-supervised neural network]. Zhang X; Peng B; Wang R; Wei X; Luo J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):262-271. PubMed ID: 38686406 [TBL] [Abstract][Full Text] [Related]
4. Learning the implicit strain reconstruction in ultrasound elastography using privileged information. Gao Z; Wu S; Liu Z; Luo J; Zhang H; Gong M; Li S Med Image Anal; 2019 Dec; 58():101534. PubMed ID: 31352179 [TBL] [Abstract][Full Text] [Related]
5. A Deep Learning Framework to Estimate Elastic Modulus from Ultrasound Measured Displacement Fields. Tuladhar UR; Simon RA; Linte CA; Richards MS Proc SPIE Int Soc Opt Eng; 2023 Feb; 12470():. PubMed ID: 37124050 [TBL] [Abstract][Full Text] [Related]
6. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage. Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407 [TBL] [Abstract][Full Text] [Related]
7. The ultrasound elastography inverse problem and the effective criteria. Aghajani A; Haghpanahi M; Nikazad T Proc Inst Mech Eng H; 2013 Nov; 227(11):1203-12. PubMed ID: 23921546 [TBL] [Abstract][Full Text] [Related]
8. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT. Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519 [TBL] [Abstract][Full Text] [Related]
9. Physics-informed UNets for discovering hidden elasticity in heterogeneous materials. Kamali A; Laksari K J Mech Behav Biomed Mater; 2024 Feb; 150():106228. PubMed ID: 37988884 [TBL] [Abstract][Full Text] [Related]
10. Convolutional Neural Network-Based Speckle Tracking for Ultrasound Strain Elastography: An Unsupervised Learning Approach. Wen S; Peng B; Wei X; Luo J; Jiang J IEEE Trans Ultrason Ferroelectr Freq Control; 2023 May; 70(5):354-367. PubMed ID: 37022912 [TBL] [Abstract][Full Text] [Related]
11. Bi-Directional Semi-Supervised Training of Convolutional Neural Networks for Ultrasound Elastography Displacement Estimation. Tehrani AKZ; Sharifzadeh M; Boctor E; Rivaz H IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1181-1190. PubMed ID: 35085077 [TBL] [Abstract][Full Text] [Related]
12. Data-Driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the Autoprogressive Method. Hoerig C; Ghaboussi J; Insana MF IEEE Trans Med Imaging; 2019 May; 38(5):1150-1160. PubMed ID: 30403625 [TBL] [Abstract][Full Text] [Related]
13. Teacher-student guided knowledge distillation for unsupervised convolutional neural network-based speckle tracking in ultrasound strain elastography. Xiang T; Li Y; Deng H; Tian C; Peng B; Jiang J Med Biol Eng Comput; 2024 Aug; 62(8):2265-2279. PubMed ID: 38627356 [TBL] [Abstract][Full Text] [Related]
14. Displacement Estimation in Ultrasound Elastography Using Pyramidal Convolutional Neural Network. Tehrani AKZ; Rivaz H IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2629-2639. PubMed ID: 32070949 [TBL] [Abstract][Full Text] [Related]
15. Towards clinical prostate ultrasound elastography using full inversion approach. Mousavi SR; Sadeghi-Naini A; Czarnota GJ; Samani A Med Phys; 2014 Mar; 41(3):033501. PubMed ID: 24593743 [TBL] [Abstract][Full Text] [Related]
16. An unsupervised learning approach to ultrasound strain elastography with spatio-temporal consistency. Delaunay R; Hu Y; Vercauteren T Phys Med Biol; 2021 Sep; 66(17):. PubMed ID: 34298531 [TBL] [Abstract][Full Text] [Related]
17. Feasibility of a Deep Learning approach to estimate Shear Wave Speed using the framework of Reverberant Shear Wave Elastography: A numerical simulation study. Quispe P; Romero SE; Castaneda B Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3895-3898. PubMed ID: 36085802 [TBL] [Abstract][Full Text] [Related]
18. B-mode ultrasound to elastography synthesis using multiscale learning. Dai F; Li Y; Zhu Y; Li B; Shi Q; Chen Y; Ta D Ultrasonics; 2024 Mar; 138():107268. PubMed ID: 38402836 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning for Differentiation of Breast Masses Detected by Screening Ultrasound Elastography. Fukuda T; Tsunoda H; Yagishita K; Naganawa S; Hayashi K; Kurihara Y Ultrasound Med Biol; 2023 Apr; 49(4):989-995. PubMed ID: 36681608 [TBL] [Abstract][Full Text] [Related]
20. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis. Xue LY; Jiang ZY; Fu TT; Wang QM; Zhu YL; Dai M; Wang WP; Yu JH; Ding H Eur Radiol; 2020 May; 30(5):2973-2983. PubMed ID: 31965257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]