These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36870167)

  • 21. AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound.
    Huang R; Lin Z; Dou H; Wang J; Miao J; Zhou G; Jia X; Xu W; Mei Z; Dong Y; Yang X; Zhou J; Ni D
    Med Image Anal; 2021 Aug; 72():102137. PubMed ID: 34216958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography.
    Lu M; Zhang H; Wang J; Yuan J; Hu Z; Liu H
    Biomed Eng Online; 2013 Aug; 12():79. PubMed ID: 23937814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time and High Quality Ultrasound Elastography Using Convolutional Neural Network by Incorporating Analytic Signal.
    Tehrani AKZ; Amiri M; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2075-2078. PubMed ID: 33018414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elasticity reconstruction from displacement and confidence measures of a multi-compressed ultrasound RF sequence.
    Li J; Cui Y; Kadour M; Noble JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):319-26. PubMed ID: 18334339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning in ultrasound elastography imaging: A review.
    Li H; Bhatt M; Qu Z; Zhang S; Hartel MC; Khademhosseini A; Cloutier G
    Med Phys; 2022 Sep; 49(9):5993-6018. PubMed ID: 35842833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications.
    Kharazihai Isfahani M; Zekri M; Marateb HR; Mañanas MA
    PLoS One; 2019; 14(12):e0224075. PubMed ID: 31816627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sparsity regularization in dynamic elastography.
    Honarvar M; Sahebjavaher RS; Salcudean SE; Rohling R
    Phys Med Biol; 2012 Oct; 57(19):5909-27. PubMed ID: 22955065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging.
    Xiao Y; Zeng J; Niu L; Zeng Q; Wu T; Wang C; Zheng R; Zheng H
    Ultrasound Med Biol; 2014 Feb; 40(2):275-86. PubMed ID: 24268454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues.
    Song P; Zhao H; Manduca A; Urban MW; Greenleaf JF; Chen S
    IEEE Trans Med Imaging; 2012 Sep; 31(9):1821-32. PubMed ID: 22736690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elastic nonlinearity imaging.
    Hall TJ; Oberait AA; Barbone PE; Sommer AM; Gokhale NH; Goenezent S; Jiang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1967-70. PubMed ID: 19964024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytical Minimization-Based Regularized Subpixel Shear-Wave Tracking for Ultrasound Elastography.
    Horeh MD; Asif A; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):285-296. PubMed ID: 30530321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An H∞ strategy for strain estimation in ultrasound elastography using biomechanical modeling constraint.
    Hu Z; Zhang H; Yuan J; Lu M; Chen S; Liu H
    PLoS One; 2013; 8(9):e73093. PubMed ID: 24058460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model-based elastography: a survey of approaches to the inverse elasticity problem.
    Doyley MM
    Phys Med Biol; 2012 Feb; 57(3):R35-73. PubMed ID: 22222839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Iterative Method for Estimating Nonlinear Elastic Constants of Tumor in Soft Tissue from Approximate Displacement Measurements.
    Dastjerdi MM; Fallah A; Rashidi S
    J Healthc Eng; 2019; 2019():2374645. PubMed ID: 30723537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches.
    Das DK; Dutta PK
    Comput Biol Med; 2019 Jan; 104():29-42. PubMed ID: 30439598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analytical Estimation of Out-of-plane Strain in Ultrasound Elastography to Improve Axial and Lateral Displacement Fields
    Kheirkhah N; Sadeghi-Naini A; Samani A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2055-2058. PubMed ID: 33018409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shear modulus decomposition algorithm in magnetic resonance elastography.
    Kwon OI; Park C; Nam HS; Woo EJ; Seo JK; Glaser KJ; Manduca A; Ehman RL
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1526-33. PubMed ID: 19783495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 4D deep learning for real-time volumetric optical coherence elastography.
    Neidhardt M; Bengs M; Latus S; Schlüter M; Saathoff T; Schlaefer A
    Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):23-27. PubMed ID: 32997312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio.
    Kamali A; Sarabian M; Laksari K
    Acta Biomater; 2023 Jan; 155():400-409. PubMed ID: 36402297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.