These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36870220)

  • 1. Modeling liquid penetration into porous materials based on substrate and liquid surface energies.
    Waldner C; Hirn U
    J Colloid Interface Sci; 2023 Jun; 640():445-455. PubMed ID: 36870220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short timescale wetting and penetration on porous sheets measured with ultrasound, direct absorption and contact angle.
    Sarah K; Ulrich H
    RSC Adv; 2018 Apr; 8(23):12861-12869. PubMed ID: 35541263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus.
    Peršin Fratnik Z; Plohl O; Kokol V; Fras Zemljič L
    J Funct Biomater; 2023 Apr; 14(4):. PubMed ID: 37103322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Prediction of Wettability and Adhesion of Lotion to Skin Based on the OWRK Method].
    Hashizaki K; Sunaga K; Oda Y; Bashuda M; Imai M; Goto Y; Taguchi H; Saito Y; Fujii M
    Yakugaku Zasshi; 2019; 139(4):635-640. PubMed ID: 30930399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous media characterization by the two-liquid method: effect of dynamic contact angle and inertia.
    Lavi B; Marmur A; Bachmann J
    Langmuir; 2008 Mar; 24(5):1918-23. PubMed ID: 18201110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Method for Measuring the Surface Free Energy of Topical Semi-solid Dosage Forms.
    Hashizaki K; Hoshii Y; Ikeuchi K; Imai M; Taguchi H; Goto Y; Fujii M
    Chem Pharm Bull (Tokyo); 2021; 69(11):1083-1087. PubMed ID: 34719590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The possibility of different time scales in the dynamics of pore imbibition.
    Martic G; Gentner F; Seveno D; De Coninck J; Blake TD
    J Colloid Interface Sci; 2004 Feb; 270(1):171-9. PubMed ID: 14693149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wettability of bare and fluorinated silanes: a combined approach based on surface free energy evaluations and dipole moment calculations.
    Cappelletti G; Ardizzone S; Meroni D; Soliveri G; Ceotto M; Biaggi C; Benaglia M; Raimondi L
    J Colloid Interface Sci; 2013 Jan; 389(1):284-91. PubMed ID: 23041024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Surface Characteristics of Rare Earth Minerals Using Contact Angle Measurements, Atomic Force Microscopy, and Inverse Gas Chromatography.
    Khodakarami M; Alagha L; Burnett DJ
    ACS Omega; 2019 Aug; 4(8):13319-13329. PubMed ID: 31460460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet granulation end point prediction using dimensionless numbers in a mixer torque rheometer: Relationship between capillary and Weber numbers and the optimal wet mass consistency.
    Ly A; Esma Achouri I; Gosselin R; Abatzoglou N
    Int J Pharm; 2021 Aug; 605():120823. PubMed ID: 34171431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the surface free energy of pharmaceutical tablets on liquid penetration.
    Costa MD; Baszkin A
    J Pharm Pharmacol; 1985 Jul; 37(7):455-60. PubMed ID: 2863346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Surface Wettability of Mineral Rock Particles by an Improved Washburn Method.
    Wang Z; Chu Y; Zhao G; Yin Z; Kuang T; Yan F; Zhang L; Zhang L
    ACS Omega; 2023 May; 8(17):15721-15729. PubMed ID: 37151559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NanoTraPPED-A New Method for Determining the Surface Energy of Nanoparticles via Pickering Emulsion Polymerization.
    Honciuc A; Negru OI
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the dynamic contact angle of capillary-driven microflows in open channels.
    Tokihiro JC; McManamen AM; Phana DN; Thongpang S; Blake TD; Theberge AB; Berthier J
    bioRxiv; 2024 Mar; ():. PubMed ID: 37163094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Testing of Dental Biomaterials-Determination of Contact Angle and Surface Free Energy.
    Liber-Kneć A; Łagan S
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34064111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-Independent Surface Energy Tuning via Siloxane Treatment for Printed Electronics.
    Schlisske S; Held M; Rödlmeier T; Menghi S; Fuchs K; Ruscello M; Morfa AJ; Lemmer U; Hernandez-Sosa G
    Langmuir; 2018 May; 34(21):5964-5970. PubMed ID: 29718677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Dynamic Contact Angle of Capillary-Driven Microflows in Open Channels.
    Tokihiro JC; McManamen AM; Phan DN; Thongpang S; Blake TD; Theberge AB; Berthier J
    Langmuir; 2024 Apr; 40(13):7215-7224. PubMed ID: 38511962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method.
    Gao Y; Guo R; Fan R; Liu Z; Kong W; Zhang P; Du FP
    Pest Manag Sci; 2018 Aug; 74(8):1804-1809. PubMed ID: 29389059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.