These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36870483)

  • 1. Substance flow analysis of arsenic and its discharge reduction in the steelworks.
    Zhu S; Gao C; Song K; Tian G; Guo D; Li X
    Sci Total Environ; 2023 Jun; 875():162545. PubMed ID: 36870483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in the sources, chemical behaviour, and whole process distribution of Hg, As, and Pb in the iron and steel smelting industry.
    Fang H; Gao J; Tong Y; Liu Q; Cheng S; Li G; Yue T
    J Hazard Mater; 2024 Dec; 480():135912. PubMed ID: 39321484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional distribution characteristics of multiple pollutants in the soil at a steelworks mega-site based on multi-source information.
    Hou Y; Li Y; Tao H; Cao H; Liao X; Liu X
    J Hazard Mater; 2023 Apr; 448():130934. PubMed ID: 36860071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].
    Zhang YH; Zhang C; Wang DY; Luo CZ; Yang X; Xu F
    Huan Jing Ke Xue; 2015 Dec; 36(12):4366-73. PubMed ID: 27011969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input-output analysis.
    Nakajima K; Ohno H; Kondo Y; Matsubae K; Takeda O; Miki T; Nakamura S; Nagasaka T
    Environ Sci Technol; 2013 May; 47(9):4653-60. PubMed ID: 23528100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation plants (ramie) and steel smelting wastes for calcium silicate coated-nZVI/biochar production: Environmental risk assessment and efficient As(V) removal mechanisms.
    Tan X; Deng Y; Shu Z; Zhang C; Ye S; Chen Q; Yang H; Yang L
    Sci Total Environ; 2022 Oct; 844():156924. PubMed ID: 35779737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Management of MSW in Spain and recovery of packaging steel scrap.
    Tayibi H; Peña C; López FA; López-Delgado A
    Waste Manag; 2007; 27(11):1655-65. PubMed ID: 17161595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag.
    Oh C; Rhee S; Oh M; Park J
    J Hazard Mater; 2012 Apr; 213-214():147-55. PubMed ID: 22349716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic pollution sources.
    Garelick H; Jones H; Dybowska A; Valsami-Jones E
    Rev Environ Contam Toxicol; 2008; 197():17-60. PubMed ID: 18982996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials.
    Zhang Y; Zhang S; Ni W; Yan Q; Gao W; Li Y
    Chemosphere; 2019 May; 223():117-123. PubMed ID: 30772590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the Effect of Calcium Alloy on Arsenic Removal from Scrap-Based Steel Production.
    Yao H; Zhuang C; Li C; Xiang S; Li X; Yang G; Zhang Z
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the content, occurrence, and leachability of arsenic, lead, and thallium in wastes from coal cleaning processes.
    Makowska D; Strugała A; Wierońska F; Bacior M
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8418-8428. PubMed ID: 30426370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic utilization of diverse industrial wastes for reutilization in steel production and their geopolymerization potential.
    Kumar N; Amritphale SS; Matthews JC; Lynam JG; Alam S; Abdulkareem OA
    Waste Manag; 2021 May; 126():728-736. PubMed ID: 33878677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.).
    Gwon HS; Khan MI; Alam MA; Das S; Kim PJ
    J Hazard Mater; 2018 Jul; 353():236-243. PubMed ID: 29674098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the industrial symbiosis of alumina and iron/steel production: Suitability of ferroalumina as raw material in iron and steel making.
    Karamoutsos S; Tzevelekou T; Christogerou A; Grilla E; Gypakis A; Pérez Villarejo L; Mantzavinos D; Angelopoulos GN
    Waste Manag Res; 2021 Oct; 39(10):1270-1276. PubMed ID: 33594947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emissions of arsenic in Sweden and their reduction.
    Lindau L
    Environ Health Perspect; 1977 Aug; 19():25-9. PubMed ID: 908306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags.
    Zhang X; Sun Y; Ma Y; Ji W; Ren Y
    Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site.
    Taiwo AM; Beddows DC; Calzolai G; Harrison RM; Lucarelli F; Nava S; Shi Z; Valli G; Vecchi R
    Sci Total Environ; 2014 Aug; 490():488-500. PubMed ID: 24875261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling of nickel smelter slag for arsenic remediation--an experimental study.
    Chowdhury SR; Yanful EK; Pratt AR
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10096-107. PubMed ID: 24770924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.