These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36870483)
21. Removal of phenanthrene and pyrene from contaminated sandy soil using hydrogen peroxide oxidation catalyzed by basic oxygen furnace slag. Hu E; He Z; Nan X; Yuan Z; Li X Environ Sci Pollut Res Int; 2019 Mar; 26(9):9281-9292. PubMed ID: 30721429 [TBL] [Abstract][Full Text] [Related]
22. Applying probabilistic material flow analysis for quality control and management of waste recycling in steelmaking. Li PC; Shih HC; Ma HW Waste Manag; 2022 May; 144():67-75. PubMed ID: 35313144 [TBL] [Abstract][Full Text] [Related]
23. Research and application of arsenic-contaminated groundwater remediation by manganese ore permeable reactive barrier. Li Y; Huang Y; Wu W; Yan M; Xie Y Environ Technol; 2021 May; 42(13):2009-2020. PubMed ID: 31668139 [TBL] [Abstract][Full Text] [Related]
24. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag. Oh BT; Lee JY; Yoon J Environ Geochem Health; 2007 Aug; 29(4):331-6. PubMed ID: 17492478 [TBL] [Abstract][Full Text] [Related]
25. The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities. Hutton M; Symon C Sci Total Environ; 1986 Dec; 57():129-50. PubMed ID: 3810138 [TBL] [Abstract][Full Text] [Related]
26. Steel slag quality control for road construction aggregates and its environmental impact: case study of Vietnamese steel industry-leaching of heavy metals from steel-making slag. Nguyen LH; Nguyen TD; Tran TVN; Nguyen DL; Tran HS; Nguyen TL; Nguyen TH; Nguyen HG; Nguyen TP; Nguyen NT; Isawa T; Ta Y; Sato R Environ Sci Pollut Res Int; 2022 Jun; 29(28):41983-41991. PubMed ID: 34564812 [TBL] [Abstract][Full Text] [Related]
27. Identification of pollution source of cadmium in soil: application of material flow analysis and a case study in Taiwan. Lu LT; Chang IC; Hsiao TY; Yu YH; Ma HW Environ Sci Pollut Res Int; 2007 Jan; 14(1):49-59. PubMed ID: 17352128 [TBL] [Abstract][Full Text] [Related]
28. Effects of steel slag amendments on accumulation of cadmium and arsenic by rice (Oryza sativa) in a historically contaminated paddy field. He H; Xiao Q; Yuan M; Huang R; Sun X; Wang X; Zhao H Environ Sci Pollut Res Int; 2020 Nov; 27(32):40001-40008. PubMed ID: 32651791 [TBL] [Abstract][Full Text] [Related]
29. Heavy metal pollution risk of desulfurized steel slag as a soil amendment in cycling use of solid wastes. Kong F; Ying Y; Lu S J Environ Sci (China); 2023 May; 127():349-360. PubMed ID: 36522067 [TBL] [Abstract][Full Text] [Related]
30. [Roadmap of Coal Control and Carbon Reduction in the Steel Industry Under the Carbon Peak and Neutralization Target]. Xue YL; Zhang J; Liu Y; Chen Y; Sun J; Jiang HQ; Zhang W; Cao D Huan Jing Ke Xue; 2022 Oct; 43(10):4392-4400. PubMed ID: 36224125 [TBL] [Abstract][Full Text] [Related]
31. [Inventories of atmospheric arsenic emissions from coal combustion in China, 2005]. Tian HZ; Qu YP Huan Jing Ke Xue; 2009 Apr; 30(4):956-62. PubMed ID: 19544989 [TBL] [Abstract][Full Text] [Related]
32. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. Makita M; Esperón M; Pereyra B; López A; Orrantia E BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595 [TBL] [Abstract][Full Text] [Related]
33. Preparation and characterisation of a (226)Ra spiked slag as reference material for radioactive control of steelworks. Mejuto M; Crespo MT; García-Toraño E; Peyrés V; Roteta M; Pérez Del Villar L Appl Radiat Isot; 2014 Dec; 94():166-174. PubMed ID: 25213083 [TBL] [Abstract][Full Text] [Related]
34. Suppression of arsenic leaching from excavated soil and the contribution of soluble and insoluble components in steel slag on arsenic immobilization. Kamata A; Miura T; Katoh M Environ Sci Pollut Res Int; 2023 Feb; 30(8):19946-19957. PubMed ID: 36242661 [TBL] [Abstract][Full Text] [Related]
35. Spatial Distribution of Air Pollution, Hotspots and Sources in an Urban-Industrial Area in the Lisbon Metropolitan Area, Portugal-A Biomonitoring Approach. Abecasis L; Gamelas CA; Justino AR; Dionísio I; Canha N; Kertesz Z; Almeida SM Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162412 [TBL] [Abstract][Full Text] [Related]
36. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius. Mauthoor S; Mohee R; Kowlesser P Waste Manag; 2014 Oct; 34(10):1800-5. PubMed ID: 24433820 [TBL] [Abstract][Full Text] [Related]
37. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea. Lee PK; Yu S; Jeong YJ; Seo J; Choi SG; Yoon BY Chemosphere; 2019 Feb; 217():183-194. PubMed ID: 30419376 [TBL] [Abstract][Full Text] [Related]
38. Industrial contributions of arsenic to the environment. Nelson KW Environ Health Perspect; 1977 Aug; 19():31-4. PubMed ID: 908308 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater. Bani-Melhem K; Al-Kilani MR; Tawalbeh M Chemosphere; 2023 Jan; 310():136668. PubMed ID: 36209869 [TBL] [Abstract][Full Text] [Related]
40. Material Flow Analysis with Multiple Material Characteristics to Assess the Potential for Flat Steel Prompt Scrap Prevention and Diversion without Remelting. Flint IP; Cabrera Serrenho A; Lupton RC; Allwood JM Environ Sci Technol; 2020 Feb; 54(4):2459-2466. PubMed ID: 31961662 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]