BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36870603)

  • 41. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders.
    Ladetto M; Brüggemann M; Monitillo L; Ferrero S; Pepin F; Drandi D; Barbero D; Palumbo A; Passera R; Boccadoro M; Ritgen M; Gökbuget N; Zheng J; Carlton V; Trautmann H; Faham M; Pott C
    Leukemia; 2014 Jun; 28(6):1299-307. PubMed ID: 24342950
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia.
    Brüggemann M; van der Velden VH; Raff T; Droese J; Ritgen M; Pott C; Wijkhuijs AJ; Gökbuget N; Hoelzer D; van Wering ER; van Dongen JJ; Kneba M
    Leukemia; 2004 Apr; 18(4):709-19. PubMed ID: 14961040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia.
    Faham M; Zheng J; Moorhead M; Carlton VE; Stow P; Coustan-Smith E; Pui CH; Campana D
    Blood; 2012 Dec; 120(26):5173-80. PubMed ID: 23074282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Gene rearrangement pattern of immunoglobulin and T-cell receptor (Ig/TR) and its clinical characteristics in children with SET-NUP214 fusion gene-positive leukemia/lymphoma].
    Li WJ; Cui L; Gao C; Zhao XX; Liu SG; Xin YP; Zhang RD; Zhang DW; Wang B; Li ZG; Wu MY
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Dec; 19(6):1362-7. PubMed ID: 22169284
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro amplification of T cell gamma gene rearrangements: a new tool for the assessment of minimal residual disease in acute lymphoblastic leukemias.
    d'Auriol L; Macintyre E; Galibert F; Sigaux F
    Leukemia; 1989 Feb; 3(2):155-8. PubMed ID: 2536129
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantification of Acute Lymphoblastic Leukemia Clonotypes in Leukapheresed Peripheral Blood Progenitor Cells Predicts Relapse Risk after Autologous Hematopoietic Stem Cell Transplantation.
    Mannis GN; Martin TG; Damon LE; Andreadis C; Olin RL; Kong KA; Faham M; Hwang J; Ai WZ; Gaensler KML; Sayre PH; Wolf JL; Logan AC
    Biol Blood Marrow Transplant; 2016 Jun; 22(6):1030-1036. PubMed ID: 26899561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies.
    van Dongen JJ; van der Velden VH; Brüggemann M; Orfao A
    Blood; 2015 Jun; 125(26):3996-4009. PubMed ID: 25999452
    [TBL] [Abstract][Full Text] [Related]  

  • 48. IMonitor: A Robust Pipeline for TCR and BCR Repertoire Analysis.
    Zhang W; Du Y; Su Z; Wang C; Zeng X; Zhang R; Hong X; Nie C; Wu J; Cao H; Xu X; Liu X
    Genetics; 2015 Oct; 201(2):459-72. PubMed ID: 26297338
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol.
    Van der Velden VH; Corral L; Valsecchi MG; Jansen MW; De Lorenzo P; Cazzaniga G; Panzer-Grümayer ER; Schrappe M; Schrauder A; Meyer C; Marschalek R; Nigro LL; Metzler M; Basso G; Mann G; Den Boer ML; Biondi A; Pieters R; Van Dongen JJ;
    Leukemia; 2009 Jun; 23(6):1073-9. PubMed ID: 19212338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CloneRetriever: An Automated Algorithm to Identify Clonal B and T Cell Gene Rearrangements by Next-Generation Sequencing for the Diagnosis of Lymphoid Malignancies.
    Halper-Stromberg E; McCall CM; Haley LM; Lin MT; Vogt S; Gocke CD; Eshleman JR; Stevens W; Martinson NA; Epeldegui M; Holdhoff M; Bettegowda C; Glantz MJ; Ambinder RF; Xian RR
    Clin Chem; 2021 Nov; 67(11):1524-1533. PubMed ID: 34491318
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular biology strategies to detect residual disease.
    Garcés-Eisele J
    Hematology; 2012 Apr; 17 Suppl 1():S66-8. PubMed ID: 22507783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monitoring minimal residual disease in pediatric hematologic malignancies.
    Campana D
    Clin Adv Hematol Oncol; 2007 Nov; 5(11):876-7, 915. PubMed ID: 18185484
    [No Abstract]   [Full Text] [Related]  

  • 53. Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease.
    Bartram J; Mountjoy E; Brooks T; Hancock J; Williamson H; Wright G; Moppett J; Goulden N; Hubank M
    J Mol Diagn; 2016 Jul; 18(4):494-506. PubMed ID: 27183494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interlaboratory Analytical Validation of a Next-Generation Sequencing Strategy for Clonotypic Assessment and Minimal Residual Disease Monitoring in Multiple Myeloma.
    Medina A; Jiménez C; Puig N; Sarasquete ME; Flores-Montero J; García-Álvarez M; Prieto-Conde I; Chillón C; Alcoceba M; González-Calle V; Gutiérrez NC; Jacobsen A; Vigil E; Hutt K; Huang Y; Orfao A; González M; Miller J; García-Sanz R
    Arch Pathol Lab Med; 2022 Jul; 146(7):862-871. PubMed ID: 34619755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurable residual disease in acute lymphoblastic leukemia: methods and clinical context in adult patients.
    Saygin C; Cannova J; Stock W; Muffly L
    Haematologica; 2022 Dec; 107(12):2783-2793. PubMed ID: 36453516
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Whole-genome sequencing facilitates patient-specific quantitative PCR-based minimal residual disease monitoring in acute lymphoblastic leukaemia, neuroblastoma and Ewing sarcoma.
    Subhash VV; Huang L; Kamili A; Wong M; Chen D; Venn NC; Atkinson C; Mayoh C; Venkat P; Tyrrell V; Marshall GM; Cowley MJ; Ekert PG; Norris MD; Haber M; Henderson MJ; Sutton R; Fletcher JI; Trahair TN
    Br J Cancer; 2022 Feb; 126(3):482-491. PubMed ID: 34471258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing.
    Giraud M; Salson M; Duez M; Villenet C; Quief S; Caillault A; Grardel N; Roumier C; Preudhomme C; Figeac M
    BMC Genomics; 2014 May; 15(1):409. PubMed ID: 24885090
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A competitive PCR-based method using TCRD, TCRG and IGH rearrangements for rapid detection of patients with high levels of minimal residual disease in acute lymphoblastic leukemia.
    Guidal C; Vilmer E; Grandchamp B; Cavé H
    Leukemia; 2002 Apr; 16(4):762-4. PubMed ID: 11960365
    [No Abstract]   [Full Text] [Related]  

  • 59. Validation of a PCR-Based Next-Generation Sequencing Approach for the Detection and Quantification of Minimal Residual Disease in Acute Lymphoblastic Leukemia and Multiple Myeloma Using gBlocks as Calibrators.
    Van der Straeten J; De Brouwer W; Kabongo E; Dresse MF; Fostier K; Schots R; Van Riet I; Bakkus M
    J Mol Diagn; 2021 May; 23(5):599-611. PubMed ID: 33549860
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Minimal residual disease.
    Radich J
    Curr Opin Hematol; 1995 Jul; 2(4):300-4. PubMed ID: 9372011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.