BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36870682)

  • 1. Structural analysis of the P132L disease mutation in caveolin-1 reveals its role in the assembly of oligomeric complexes.
    Han B; Gulsevin A; Connolly S; Wang T; Meyer B; Porta J; Tiwari A; Deng A; Chang L; Peskova Y; Mchaourab HS; Karakas E; Ohi MD; Meiler J; Kenworthy AK
    J Biol Chem; 2023 Apr; 299(4):104574. PubMed ID: 36870682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the caveolin-1 P132L mutant: critical insights into its oligomeric behavior and structure.
    Rieth MD; Lee J; Glover KJ
    Biochemistry; 2012 May; 51(18):3911-8. PubMed ID: 22506673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early proteostasis of caveolins synchronizes trafficking, degradation, and oligomerization to prevent toxic aggregation.
    Morales-Paytuví F; Fajardo A; Ruiz-Mirapeix C; Rae J; Tebar F; Bosch M; Enrich C; Collins BM; Parton RG; Pol A
    J Cell Biol; 2023 Sep; 222(9):. PubMed ID: 37526691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia.
    Lee H; Park DS; Razani B; Russell RG; Pestell RG; Lisanti MP
    Am J Pathol; 2002 Oct; 161(4):1357-69. PubMed ID: 12368209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tagging strategies strongly affect the fate of overexpressed caveolin-1.
    Han B; Tiwari A; Kenworthy AK
    Traffic; 2015 Apr; 16(4):417-38. PubMed ID: 25639341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The building blocks of caveolae revealed: caveolins finally take center stage.
    Kenworthy AK
    Biochem Soc Trans; 2023 Apr; 51(2):855-869. PubMed ID: 37082988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleoside diphosphate kinase B is required for the formation of heterotrimeric G protein containing caveolae.
    Hippe HJ; Wolf NM; Abu-Taha HI; Lutz S; Le Lay S; Just S; Rottbauer W; Katus HA; Wieland T
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Oct; 384(4-5):461-72. PubMed ID: 21409430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential impact of caveolae and caveolin-1 scaffolds on the membrane raft proteome.
    Zheng YZ; Boscher C; Inder KL; Fairbank M; Loo D; Hill MM; Nabi IR; Foster LJ
    Mol Cell Proteomics; 2011 Oct; 10(10):M110.007146. PubMed ID: 21753190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caveolae and cancer: A new mechanical perspective.
    Lamaze C; Torrino S
    Biomed J; 2015; 38(5):367-79. PubMed ID: 26345539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal.
    Copeland CA; Han B; Tiwari A; Austin ED; Loyd JE; West JD; Kenworthy AK
    Mol Biol Cell; 2017 Nov; 28(22):3095-3111. PubMed ID: 28904206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaffolds and the scaffolding domain: an alternative paradigm for caveolin-1 signaling.
    Lim JE; Bernatchez P; Nabi IR
    Biochem Soc Trans; 2024 Apr; 52(2):947-959. PubMed ID: 38526159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae.
    Zimnicka AM; Husain YS; Shajahan AN; Sverdlov M; Chaga O; Chen Z; Toth PT; Klomp J; Karginov AV; Tiruppathi C; Malik AB; Minshall RD
    Mol Biol Cell; 2016 Jul; 27(13):2090-106. PubMed ID: 27170175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a caveolin-1 mutation associated with both pulmonary arterial hypertension and congenital generalized lipodystrophy.
    Han B; Copeland CA; Kawano Y; Rosenzweig EB; Austin ED; Shahmirzadi L; Tang S; Raghunathan K; Chung WK; Kenworthy AK
    Traffic; 2016 Dec; 17(12):1297-1312. PubMed ID: 27717241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease.
    Enyong EN; Gurley JM; De Ieso ML; Stamer WD; Elliott MH
    Prog Retin Eye Res; 2022 Nov; 91():101094. PubMed ID: 35729002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes.
    Li S; Galbiati F; Volonte D; Sargiacomo M; Engelman JA; Das K; Scherer PE; Lisanti MP
    FEBS Lett; 1998 Aug; 434(1-2):127-34. PubMed ID: 9738464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells.
    Orlichenko L; Huang B; Krueger E; McNiven MA
    J Biol Chem; 2006 Feb; 281(8):4570-9. PubMed ID: 16332692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology.
    Busija AR; Patel HH; Insel PA
    Am J Physiol Cell Physiol; 2017 Apr; 312(4):C459-C477. PubMed ID: 28122734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavin proteins: New players in the caveolae field.
    Briand N; Dugail I; Le Lay S
    Biochimie; 2011 Jan; 93(1):71-7. PubMed ID: 20363285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes.
    Hayer A; Stoeber M; Bissig C; Helenius A
    Traffic; 2010 Mar; 11(3):361-82. PubMed ID: 20070607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Insights into the Molecular Architecture of Caveolin-1.
    Ohi MD; Kenworthy AK
    J Membr Biol; 2022 Oct; 255(4-5):375-383. PubMed ID: 35972526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.