These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36871035)

  • 1. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity.
    Cheng H; Zhu X; Cheng X; Cai P; Liu J; Yao H; Zhang L; Duan J
    Nat Commun; 2023 Mar; 14(1):1243. PubMed ID: 36871035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-off.
    Zhang X; Yao J; Liu B; Yan J; Lu L; Li Y; Gao H; Li X
    Nano Lett; 2018 Jul; 18(7):4247-4256. PubMed ID: 29901403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanolattices: An Emerging Class of Mechanical Metamaterials.
    Bauer J; Meza LR; Schaedler TA; Schwaiger R; Zheng X; Valdevit L
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28873250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices.
    Zhang X; Wang Y; Ding B; Li X
    Small; 2020 Apr; 16(15):e1902842. PubMed ID: 31483576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Durable Ultralow-k Capacitors with Enhanced Breakdown Strength in Density-Variant Nanolattices.
    Kim MW; Lifson ML; Gallivan R; Greer JR; Kim BJ
    Adv Mater; 2023 Feb; 35(6):e2208409. PubMed ID: 36380720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centimetre-scale crack-free self-assembly for ultra-high tensile strength metallic nanolattices.
    Jiang Z; Pikul JH
    Nat Mater; 2021 Nov; 20(11):1512-1518. PubMed ID: 34140654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anelasticity in thin-shell nanolattices.
    Chen IT; Poblete FR; Bagal A; Zhu Y; Chang CH
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2201589119. PubMed ID: 36095191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Performance of Copper-Nanocluster-Polymer Nanolattices.
    Tang J; Liang H; Ren A; Ma L; Hao W; Yao Y; Zheng L; Li H; Li Q
    Adv Mater; 2024 Jun; 36(26):e2400080. PubMed ID: 38553432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures.
    Guell Izard A; Bauer J; Crook C; Turlo V; Valdevit L
    Small; 2019 Nov; 15(45):e1903834. PubMed ID: 31531942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaching theoretical strength in glassy carbonĀ nanolattices.
    Bauer J; Schroer A; Schwaiger R; Kraft O
    Nat Mater; 2016 Apr; 15(4):438-43. PubMed ID: 26828314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Properties of Lattice Structures with a Central Cube: Experiments and Simulations.
    Guo S; Ma Y; Liu P; Chen Y
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures.
    Lee SW; Jafary-Zadeh M; Chen DZ; Zhang YW; Greer JR
    Nano Lett; 2015 Sep; 15(9):5673-81. PubMed ID: 26262592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multi-Cell Hybrid Approach to Elevate the Energy Absorption of Micro-Lattice Materials.
    Xiao L; Xu X; Song W; Hu M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32937910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plate-nanolattices at the theoretical limit of stiffness and strength.
    Crook C; Bauer J; Guell Izard A; Santos de Oliveira C; Martins de Souza E Silva J; Berger JB; Valdevit L
    Nat Commun; 2020 Mar; 11(1):1579. PubMed ID: 32221283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Parameters for Subwavelength Transparent Conductive Nanolattices.
    Diaz Leon JJ; Feigenbaum E; Kobayashi NP; Han TY; Hiszpanski AM
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35360-35367. PubMed ID: 28960951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer dielectric reflector using low-index nanolattices.
    Chen IT; Premnath VA; Chang CH
    Opt Lett; 2024 Feb; 49(4):1093-1096. PubMed ID: 38359261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientation-Dependent Mechanical Behaviors of BCC-Fe in Light of the Thermo-Kinetic Synergy of Plastic Deformation.
    Liu Y; Du J; Zhang K; Gao K; Xue H; Fang X; Song K; Liu F
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials.
    Xing Y; Luo L; Li Y; Wang D; Hu D; Li T; Zhang H
    J Am Chem Soc; 2022 Mar; 144(10):4393-4402. PubMed ID: 35230831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoarchitected metal/ceramic interpenetrating phase composites.
    Bauer J; Sala-Casanovas M; Amiri M; Valdevit L
    Sci Adv; 2022 Aug; 8(33):eabo3080. PubMed ID: 35977008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.