These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36871126)

  • 41. BCL::contact-low confidence fold recognition hits boost protein contact prediction and de novo structure determination.
    Karakaş M; Woetzel N; Meiler J
    J Comput Biol; 2010 Feb; 17(2):153-68. PubMed ID: 19772383
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Current structure predictors are not learning the physics of protein folding.
    Outeiral C; Nissley DA; Deane CM
    Bioinformatics; 2022 Mar; 38(7):1881-1887. PubMed ID: 35099504
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation.
    Russell RB; Saqi MA; Sayle RA; Bates PA; Sternberg MJ
    J Mol Biol; 1997 Jun; 269(3):423-39. PubMed ID: 9199410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The structural coverage of the human proteome before and after AlphaFold.
    Porta-Pardo E; Ruiz-Serra V; Valentini S; Valencia A
    PLoS Comput Biol; 2022 Jan; 18(1):e1009818. PubMed ID: 35073311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AlphaFold2 fails to predict protein fold switching.
    Chakravarty D; Porter LL
    Protein Sci; 2022 Jun; 31(6):e4353. PubMed ID: 35634782
    [TBL] [Abstract][Full Text] [Related]  

  • 46. AlphaFold - A Personal Perspective on the Impact of Machine Learning.
    Fersht AR
    J Mol Biol; 2021 Oct; 433(20):167088. PubMed ID: 34087198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. EigenTHREADER: analogous protein fold recognition by efficient contact map threading.
    Buchan DWA; Jones DT
    Bioinformatics; 2017 Sep; 33(17):2684-2690. PubMed ID: 28419258
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparing protein sequence-based and predicted secondary structure-based methods for identification of remote homologs.
    Geetha V; Di Francesco V; Garnier J; Munson PJ
    Protein Eng; 1999 Jul; 12(7):527-34. PubMed ID: 10436078
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein oligomer structure prediction using GALAXY in CASP14.
    Park T; Woo H; Yang J; Kwon S; Won J; Seok C
    Proteins; 2021 Dec; 89(12):1844-1851. PubMed ID: 34363243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly significant improvement of protein sequence alignments with AlphaFold2.
    Baltzis A; Mansouri L; Jin S; Langer BE; Erb I; Notredame C
    Bioinformatics; 2022 Nov; 38(22):5007-5011. PubMed ID: 36130276
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein structure prediction using a combination of sequence-based alignment, constrained energy minimization, and structural alignment.
    Standley DM; Eyrich VA; An Y; Pincus DL; Gunn JR; Friesner RA
    Proteins; 2001; Suppl 5():133-9. PubMed ID: 11835490
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of protein structure by simulating coarse-grained folding pathways: a preliminary report.
    Colubri A
    J Biomol Struct Dyn; 2004 Apr; 21(5):625-38. PubMed ID: 14769055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12.
    Haas J; Barbato A; Behringer D; Studer G; Roth S; Bertoni M; Mostaguir K; Gumienny R; Schwede T
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):387-398. PubMed ID: 29178137
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Real-time structure search and structure classification for AlphaFold protein models.
    Aderinwale T; Bharadwaj V; Christoffer C; Terashi G; Zhang Z; Jahandideh R; Kagaya Y; Kihara D
    Commun Biol; 2022 Apr; 5(1):316. PubMed ID: 35383281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DeepSF: deep convolutional neural network for mapping protein sequences to folds.
    Hou J; Adhikari B; Cheng J
    Bioinformatics; 2018 Apr; 34(8):1295-1303. PubMed ID: 29228193
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates.
    Yang Y; Faraggi E; Zhao H; Zhou Y
    Bioinformatics; 2011 Aug; 27(15):2076-82. PubMed ID: 21666270
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of folding pathway and kinetics among plant hemoglobins using an average distance map method.
    Nakajima S; Alvarez-Salgado E; Kikuchi T; Arredondo-Peter R
    Proteins; 2005 Nov; 61(3):500-6. PubMed ID: 16184600
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function.
    Skolnick J; Gao M; Zhou H; Singh S
    J Chem Inf Model; 2021 Oct; 61(10):4827-4831. PubMed ID: 34586808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.