BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36871161)

  • 21. Automated contouring and planning pipeline for hippocampal-avoidant whole-brain radiotherapy.
    Feng CH; Cornell M; Moore KL; Karunamuni R; Seibert TM
    Radiat Oncol; 2020 Oct; 15(1):251. PubMed ID: 33126894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consistency in contouring of organs at risk by artificial intelligence vs oncologists in head and neck cancer patients.
    Nielsen CP; Lorenzen EL; Jensen K; Sarup N; Brink C; Smulders B; Holm AIS; Samsøe E; Nielsen MS; Sibolt P; Skyt PS; Elstrøm UV; Johansen J; Zukauskaite R; Eriksen JG; Farhadi M; Andersen M; Maare C; Overgaard J; Grau C; Friborg J; Hansen CR
    Acta Oncol; 2023 Nov; 62(11):1418-1425. PubMed ID: 37703300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Technology assessment of automated atlas based segmentation in prostate bed contouring.
    Hwee J; Louie AV; Gaede S; Bauman G; D'Souza D; Sexton T; Lock M; Ahmad B; Rodrigues G
    Radiat Oncol; 2011 Sep; 6():110. PubMed ID: 21906279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of a novel atlas for muscles of mastication to reduce inter observer variability in head and neck radiotherapy contouring.
    Hague C; Beasley W; Dixon L; Gaito S; Garcez K; Green A; Lee LW; Maranzano M; McPartlin A; Mistry H; Mullan D; Sykes AJ; Thomson D; Van Herk M; West CM; Slevin N
    Radiother Oncol; 2019 Jan; 130():56-61. PubMed ID: 30420234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.
    Lustberg T; van Soest J; Gooding M; Peressutti D; Aljabar P; van der Stoep J; van Elmpt W; Dekker A
    Radiother Oncol; 2018 Feb; 126(2):312-317. PubMed ID: 29208513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy.
    Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A
    J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Framework for Radiation Oncology Department-wide Evaluation and Implementation of Commercial Artificial Intelligence Autocontouring.
    Maes D; Gates EDH; Meyer J; Kang J; Nguyen BT; Lavilla M; Melancon D; Weg ES; Tseng YD; Lim A; Bowen SR
    Pract Radiat Oncol; 2024; 14(2):e150-e158. PubMed ID: 37935308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.
    Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A
    Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explaining the dosimetric impact of contouring errors in head and neck radiotherapy.
    González PJ; Simões R; Kiers K; Janssen TM
    Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35732139
    [No Abstract]   [Full Text] [Related]  

  • 32. Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system.
    Costea M; Zlate A; Durand M; Baudier T; Grégoire V; Sarrut D; Biston MC
    Radiother Oncol; 2022 Dec; 177():61-70. PubMed ID: 36328093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creation of RTOG compliant patient CT-atlases for automated atlas based contouring of local regional breast and high-risk prostate cancers.
    Velker VM; Rodrigues GB; Dinniwell R; Hwee J; Louie AV
    Radiat Oncol; 2013 Jul; 8():188. PubMed ID: 23885662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk.
    Thomson D; Boylan C; Liptrot T; Aitkenhead A; Lee L; Yap B; Sykes A; Rowbottom C; Slevin N
    Radiat Oncol; 2014 Aug; 9():173. PubMed ID: 25086641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy.
    Zabel WJ; Conway JL; Gladwish A; Skliarenko J; Didiodato G; Goorts-Matthews L; Michalak A; Reistetter S; King J; Nakonechny K; Malkoske K; Tran MN; McVicar N
    Pract Radiat Oncol; 2021; 11(1):e80-e89. PubMed ID: 32599279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Planning comparison of five automated treatment planning solutions for locally advanced head and neck cancer.
    Krayenbuehl J; Zamburlini M; Ghandour S; Pachoud M; Tanadini-Lang S; Tol J; Guckenberger M; Verbakel WFAR
    Radiat Oncol; 2018 Sep; 13(1):170. PubMed ID: 30201017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accuracy of software-assisted contour propagation from planning CT to cone beam CT in head and neck radiotherapy.
    Hvid CA; Elstrøm UV; Jensen K; Alber M; Grau C
    Acta Oncol; 2016 Nov; 55(11):1324-1330. PubMed ID: 27556786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring Variations in the Use of Automated Contouring Software.
    Nealon KA; Han EY; Kry SF; Nguyen C; Pham M; Reed VK; Rosenthal D; Simiele S; Court LE
    Pract Radiat Oncol; 2024; 14(1):e75-e85. PubMed ID: 37797883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-institutional quantitative evaluation and clinical validation of Smart Probabilistic Image Contouring Engine (SPICE) autosegmentation of target structures and normal tissues on computer tomography images in the head and neck, thorax, liver, and male pelvis areas.
    Zhu M; Bzdusek K; Brink C; Eriksen JG; Hansen O; Jensen HA; Gay HA; Thorstad W; Widder J; Brouwer CL; Steenbakkers RJ; Vanhauten HA; Cao JQ; McBrayne G; Patel SH; Cannon DM; Hardcastle N; Tomé WA; Guckenberg M; Parikh PJ
    Int J Radiat Oncol Biol Phys; 2013 Nov; 87(4):809-16. PubMed ID: 24138920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating the Effectiveness of Deep Learning Contouring across Multiple Radiotherapy Centres.
    Walker Z; Bartley G; Hague C; Kelly D; Navarro C; Rogers J; South C; Temple S; Whitehurst P; Chuter R
    Phys Imaging Radiat Oncol; 2022 Oct; 24():121-128. PubMed ID: 36405563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.