These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36871366)

  • 21. Effect of physicochemical properties of peptides from soy protein on their antimicrobial activity.
    Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G
    Peptides; 2017 Aug; 94():10-18. PubMed ID: 28587835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of Four de Novo Designed Antimicrobial Peptides.
    Murray B; Pearson CS; Aranjo A; Cherupalla D; Belfort G
    J Biol Chem; 2016 Dec; 291(49):25706-25715. PubMed ID: 27738105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes.
    Kwon B; Waring AJ; Hong M
    Biophys J; 2013 Nov; 105(10):2333-42. PubMed ID: 24268145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of hydrophobic and amphipathic antimicrobial peptides with lipid bicelles.
    Bortolus M; Dalzini A; Toniolo C; Hahm KS; Maniero AL
    J Pept Sci; 2014 Jul; 20(7):517-25. PubMed ID: 24863176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid tails modulate antimicrobial peptide membrane incorporation and activity.
    Walker LR; Marty MT
    Biochim Biophys Acta Biomembr; 2022 Apr; 1864(4):183870. PubMed ID: 35077676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Terminal charges modulate the pore forming activity of cationic amphipathic helices.
    Strandberg E; Bentz D; Wadhwani P; Bürck J; Ulrich AS
    Biochim Biophys Acta Biomembr; 2020 Apr; 1862(4):183243. PubMed ID: 32126225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.
    Balleza D; Alessandrini A; Beltrán García MJ
    J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of non-electrostatic forces in antimicrobial potency of a dengue-virus derived fusion peptide VG16KRKP: Mechanistic insight into the interfacial peptide-lipid interactions.
    Bhattacharyya D; Kim M; Mroue KH; Park M; Tiwari A; Saleem M; Lee D; Bhunia A
    Biochim Biophys Acta Biomembr; 2019 Apr; 1861(4):798-809. PubMed ID: 30689979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers.
    Swana KW; Nagarajan R; Camesano TA
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The SMART model: Soft Membranes Adapt and Respond, also Transiently, in the presence of antimicrobial peptides.
    Bechinger B
    J Pept Sci; 2015 May; 21(5):346-55. PubMed ID: 25522713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The membrane activity of the antimicrobial peptide caerin 1.1 is pH dependent.
    Sani MA; Le Brun AP; Rajput S; Attard T; Separovic F
    Biophys J; 2023 Mar; 122(6):1058-1067. PubMed ID: 36680343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (MSI-78).
    Lee DK; Brender JR; Sciacca MF; Krishnamoorthy J; Yu C; Ramamoorthy A
    Biochemistry; 2013 May; 52(19):3254-63. PubMed ID: 23590672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring membrane selectivity of the antimicrobial peptide KIGAKI using solid-state NMR spectroscopy.
    Lu JX; Blazyk J; Lorigan GA
    Biochim Biophys Acta; 2006 Sep; 1758(9):1303-13. PubMed ID: 16537078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrophobic-hydrophilic Alternation: An effective Pattern to de novo Designed Antimicrobial Peptides.
    Cheng Q; Zeng P
    Curr Pharm Des; 2022; 28(44):3527-3537. PubMed ID: 36056849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Review of the Mechanism of Action of Amphibian Antimicrobial Peptides Focusing on Peptide-Membrane Interaction and Membrane Curvature.
    Vineeth Kumar TV; Sanil G
    Curr Protein Pept Sci; 2017; 18(12):1263-1272. PubMed ID: 28699512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pore structure, thinning effect, and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study.
    Wi S; Kim C
    J Phys Chem B; 2008 Sep; 112(36):11402-14. PubMed ID: 18700738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity.
    Henderson JM; Iyengar NS; Lam KLH; Maldonado E; Suwatthee T; Roy I; Waring AJ; Lee KYC
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182977. PubMed ID: 31077677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.
    Bertelsen K; Dorosz J; Hansen SK; Nielsen NC; Vosegaard T
    PLoS One; 2012; 7(10):e47745. PubMed ID: 23094079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.