These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 36871513)
1. Progressive activation of porous vanadium nitride microspheres with intercalation-conversion reactions toward high performance over a wide temperature range for zinc-ion batteries. Yuan Z; Yang X; Lin C; Xiong P; Su A; Fang Y; Chen X; Fan H; Xiao F; Wei M; Qian Q; Chen Q; Zeng L J Colloid Interface Sci; 2023 Jun; 640():487-497. PubMed ID: 36871513 [TBL] [Abstract][Full Text] [Related]
2. Controllable Design of Metal-Organic Framework-Derived Vanadium Oxynitride for High-Capacity and Long-Cycle Aqueous Zn-Ion Batteries. Liu Y; Zhang J; Liu Y; Zhang M; Pan Z; Cai K Small; 2024 Sep; 20(37):e2401922. PubMed ID: 38721984 [TBL] [Abstract][Full Text] [Related]
3. Unlatching the Additional Zinc Storage Ability of Vanadium Nitride Nanocrystallites. Yao X; Khanam Z; Li C; Koroma M; Ouyang T; Hu YW; Shen K; Balogun MS Small; 2024 Jul; 20(30):e2312036. PubMed ID: 38396208 [TBL] [Abstract][Full Text] [Related]
4. Anchored VN Quantum Dots Boosting High Capacity and Cycle Durability of Na Dong C; Zhang J; Huang C; Liu R; Xia Z; Lu S; Wang L; Zhang L; Chen L Small; 2024 Oct; 20(40):e2402927. PubMed ID: 38794873 [TBL] [Abstract][Full Text] [Related]
5. Unraveling Energy Storage Performance and Mechanism of Metal-Organic Framework-Derived Copper Vanadium Oxides with Tunable Composition for Aqueous Zinc-Ion Batteries. Kakarla AK; Bandi H; Syed WA; Narsimulu D; Shanthappa R; Yu JS Small Methods; 2024 Sep; ():e2400819. PubMed ID: 39285816 [TBL] [Abstract][Full Text] [Related]
6. Aging-Responsive Phase Transition of VOOH to V Nagraj R; Puttaswamy R; Yadav P; Beere HK; Upadhyay SN; Sanna Kotrappanavar N; Pakhira S; Ghosh D ACS Appl Mater Interfaces; 2022 Dec; 14(51):56886-56899. PubMed ID: 36516045 [TBL] [Abstract][Full Text] [Related]
8. Carbon Nitride Pillared Vanadate Via Chemical Pre-Intercalation Towards High-Performance Aqueous Zinc-Ion Batteries. Xu Y; Fan G; Sun PX; Guo Y; Wang Y; Gu X; Wu L; Yu L Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303529. PubMed ID: 37132610 [TBL] [Abstract][Full Text] [Related]
9. Tremella-like Hydrated Vanadium Oxide Cathode with an Architectural Design Strategy toward Ultralong Lifespan Aqueous Zinc-Ion Batteries. Guan X; Sun Q; Sun C; Duan T; Nie W; Liu Y; Zhao K; Cheng H; Lu X ACS Appl Mater Interfaces; 2021 Sep; 13(35):41688-41697. PubMed ID: 34436858 [TBL] [Abstract][Full Text] [Related]
10. Self-Transformation Strategy Toward Vanadium Dioxide Cathode For Advanced Aqueous Zinc Batteries. Deng W; Xu Z; Li G; Wang X Small; 2023 Jun; 19(24):e2207754. PubMed ID: 36896996 [TBL] [Abstract][Full Text] [Related]
11. High-Capacity Aqueous Storage in Vanadate Cathodes Promoted by the Zn-Ion and Proton Intercalation and Conversion-Intercalation of Vanadyl Ions. Kim S; Shan X; Abeykoon M; Kwon G; Olds D; Teng X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25993-26000. PubMed ID: 34019372 [TBL] [Abstract][Full Text] [Related]
12. Electrochemically Induced Structural and Morphological Evolutions in Nickel Vanadium Oxide Hydrate Nanobelts Enabling Fast Transport Kinetics for High-Performance Zinc Storage. Feng J; Wang Y; Liu S; Chen S; Wen N; Zeng X; Dong Y; Huang C; Kuang Q; Zhao Y ACS Appl Mater Interfaces; 2020 Jun; 12(22):24726-24736. PubMed ID: 32374149 [TBL] [Abstract][Full Text] [Related]
13. Layer-by-layer stacked vanadium nitride nanocrystals/N-doped carbon hybrid nanosheets toward high-performance aqueous zinc-ion batteries. Niu Y; Xu W; Ma Y; Gao Y; Li X; Li L; Zhi L Nanoscale; 2022 May; 14(20):7607-7612. PubMed ID: 35543557 [TBL] [Abstract][Full Text] [Related]
14. Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries. Jiang Y; Lu J; Liu W; Xing C; Lu S; Liu X; Xu Y; Zhang J; Zhao B ACS Appl Mater Interfaces; 2022 Apr; 14(15):17415-17425. PubMed ID: 35389628 [TBL] [Abstract][Full Text] [Related]
15. Boosting the zinc ion storage capacity and cycling stability of interlayer-expanded vanadium disulfide through in-situ electrochemical oxidation strategy. Yang M; Wang Z; Ben H; Zhao M; Luo J; Chen D; Lu Z; Wang L; Liu C J Colloid Interface Sci; 2022 Feb; 607(Pt 1):68-75. PubMed ID: 34492355 [TBL] [Abstract][Full Text] [Related]
16. Boosting the Electrochemical Performance of V Park JS; Yang S; Kang YC Small Methods; 2021 Sep; 5(9):e2100578. PubMed ID: 34928069 [TBL] [Abstract][Full Text] [Related]
17. Regulating the Interlayer Spacing of Vanadium Oxide by In Situ Polyaniline Intercalation Enables an Improved Aqueous Zinc-Ion Storage Performance. Yin C; Pan C; Liao X; Pan Y; Yuan L ACS Appl Mater Interfaces; 2021 Aug; 13(33):39347-39354. PubMed ID: 34383482 [TBL] [Abstract][Full Text] [Related]
18. Wang X; Zhang Z; Huang M; Feng J; Xiong S; Xi B Nano Lett; 2022 Jan; 22(1):119-127. PubMed ID: 34931840 [TBL] [Abstract][Full Text] [Related]
19. Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries. Bai S; Wang X; Wang Q; Chen Z; Zhang Y ACS Appl Mater Interfaces; 2024 May; 16(17):22403-22410. PubMed ID: 38635348 [TBL] [Abstract][Full Text] [Related]
20. Double-shell zinc manganate hollow microspheres embedded in carbon networks as cathode materials for high-performance aqueous zinc-ion batteries. Wang S; Zhang S; Chen X; Yuan G; Wang B; Bai J; Wang H; Wang G J Colloid Interface Sci; 2020 Nov; 580():528-539. PubMed ID: 32711203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]