These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36872814)

  • 1. Implantable nanostructured MEA with biphasic current stimulator for retinal prostheses.
    Han S; Kim C; Kim K; Lee S
    Technol Health Care; 2023; 31(5):1981-1995. PubMed ID: 36872814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 8-Channel Biphasic Current Stimulator Optimized for Retinal Prostheses.
    Lee CE; Jung Y; Song YK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4298-4302. PubMed ID: 33714317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical characteristics of 2D and 3D microelectrodes for high-resolution retinal prostheses.
    Lee S; Ahn J; Yoo H; Jung S; Oh S; Park S; Cho D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3535-8. PubMed ID: 24110492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
    Lee S; Ahn JH; Seo JM; Chung H; Cho DI
    Sensors (Basel); 2015 Jun; 15(6):14345-55. PubMed ID: 26091397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible microelectrode array for retinal prosthesis.
    Bin Sun ; Tengyue Li ; Kai Xia ; Qi Zeng ; Tianzhun Wu ; Humayun MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1097-1100. PubMed ID: 29060066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study.
    Lyu Q; Lu Z; Li H; Qiu S; Guo J; Sui X; Sun P; Li L; Chai X; Lovell NH
    Int J Neural Syst; 2020 Mar; 30(3):2050006. PubMed ID: 32116093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation.
    Asghar SA; Mahadevappa M
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):262-271. PubMed ID: 37747869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microelectrode Array With Integrated Pneumatic Channels for Dynamic Control of Electrode Position in Retinal Implants.
    Xu Y; Pang S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2292-2298. PubMed ID: 34705653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D flexible microelectrode array for subretinal stimulation.
    Seo HW; Kim N; Ahn J; Cha S; Goo YS; Kim S
    J Neural Eng; 2019 Aug; 16(5):056016. PubMed ID: 31357188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation.
    Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X
    J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The research on high-density flexible microelectrode array of retinal prosthesis based on MEMS technology].
    Feng G; Sui X; Wang Y; Li G; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Nov; 37(6):407-10. PubMed ID: 24617208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Subretinal 3D Microelectrodes with Hexagonal Arrangement.
    Seo HW; Kim N; Kim S
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32365472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration.
    Chung WG; Jang J; Cui G; Lee S; Jeong H; Kang H; Seo H; Kim S; Kim E; Lee J; Lee SG; Byeon SH; Park JU
    Nat Nanotechnol; 2024 May; 19(5):688-697. PubMed ID: 38225357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse count modulation based biphasic current stimulator for retinal prosthesis and in vitro experiment using rd1 mouse.
    Sungjin Oh ; Jae-Hyun Ahn ; Jongyoon Shin ; Hyoungho Ko ; Yong-Sook Goo ; Dong-Il Dan Cho
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1711-4. PubMed ID: 25570305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microelectrode arrays fabricated using a novel hybrid microfabrication method.
    Merlo MW; Snyder RL; Middlebrooks JC; Bachman M
    Biomed Microdevices; 2012 Feb; 14(1):193-205. PubMed ID: 21979567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancements in fabrication process of microelectrode array for a retinal prosthesis using Liquid Crystal Polymer (LCP).
    Jeong J; Shin S; Lee GJ; Gwon TM; Park JH; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5295-8. PubMed ID: 24110931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A precise charge balancing and compliance voltage monitoring stimulator front-end for 1024-electrodes retinal prosthesis.
    Chun H; Tran N; Yang Y; Kavehei O; Bai S; Skafidas S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3001-4. PubMed ID: 23366556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.