These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36872969)

  • 21. Enabling high-performance lithium iron phosphate cathodes through an interconnected carbon network for practical and high-energy lithium-ion batteries.
    Li B; Xiao J; Zhu X; Wu Z; Zhang X; Han Y; Niu J; Wang F
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):942-948. PubMed ID: 37774657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery.
    Qiu L; Shao Z; Xiang P; Wang D; Zhou Z; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Sep; 110():121-7. PubMed ID: 24906737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Low-Temperature Carbonization Capping of LiFePO
    Guo F; Huang X; Li Y; Zhang S; He X; Liu J; Yu Z; Li F; Liu B
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymer-Templated LiFePO
    Fischer MG; Hua X; Wilts BD; Castillo-Martínez E; Steiner U
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):1646-1653. PubMed ID: 29266921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rational Design of an Electron/Ion Dual-Conductive Cathode Framework for High-Performance All-Solid-State Lithium Batteries.
    Wang J; Yan X; Zhang Z; Guo R; Ying H; Han G; Han WQ
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41323-41332. PubMed ID: 32830944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of H
    Fan X; Zhou Y; Wang M; Lai J; Shan W; Xing Z; Tang H; Dai G; Zhang G; Tan L
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17587-17597. PubMed ID: 38547461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-stable Li||LiFePO
    Lin Y; Zhang X; Liu Y; Wang Q; Lin C; Chen S; Zhang Y
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):14-23. PubMed ID: 35973254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LifePo₄ Coated Homogeneously with 3D Carbon Nanotube Conductive Networks for Enhanced Electrochemical Performance.
    Xiao K; Chen X; Deng W; Tang Q; Hu A; Zhang L; Liu Z; Li Z
    J Nanosci Nanotechnol; 2017 Jan; 17(1):341-7. PubMed ID: 29620833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries.
    Hu Z; Zhu N; Wei X; Zhang S; Li F; Wu P; Chen Y
    J Environ Manage; 2021 Nov; 298():113500. PubMed ID: 34388548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process.
    Tian R; Liu H; Jiang Y; Chen J; Tan X; Liu G; Zhang L; Gu X; Guo Y; Wang H; Sun L; Chu W
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11377-86. PubMed ID: 25970716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomass-Derived Carbon Utilization for Electrochemical Energy Enhancement in Lithium-Ion Batteries.
    Jeong BJ; Jiang F; Sung JY; Jung SP; Oh DW; Gnanamuthu RM; Vediappan K; Lee CW
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage.
    Wang B; Liu A; Abdulla WA; Wang D; Zhao XS
    Nanoscale; 2015 May; 7(19):8819-28. PubMed ID: 25908535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning of composition and morphology of LiFePO
    Erabhoina H; Thelakkat M
    Sci Rep; 2022 Mar; 12(1):5454. PubMed ID: 35361808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. C-LFP-multi-walled carbon nanotubes composite cathode materials synthesized by solid-state reaction for lithium ion batteries.
    Hwang YH; Prabakar SJ; Pyo M
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5440-4. PubMed ID: 23882776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.
    Wu J; Cai W; Shang G
    Nanoscale Res Lett; 2016 Dec; 11(1):223. PubMed ID: 27117633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermally assisted conversion of biowaste into environment-friendly energy storage materials for lithium-ion batteries.
    Ho CW; Shaji N; Kim HK; Park JW; Nanthagopal M; Lee CW
    Chemosphere; 2022 Jan; 286(Pt 1):131654. PubMed ID: 34325260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LiFePO
    You L; Tang J; Wu Q; Zhang C; Liu D; Huang T; Yu A
    RSC Adv; 2020 Oct; 10(62):37916-37922. PubMed ID: 35515173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-ion batteries.
    Lin M; Chen Y; Chen B; Wu X; Kam K; Lu W; Chan HL; Yuan J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17556-63. PubMed ID: 25233480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.