BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36873352)

  • 1. Boosting Productivity for Advanced Biomanufacturing by Re-Using Viable Cells.
    Reger LN; Saballus M; Matuszczyk J; Kampmann M; Wijffels RH; Martens DE; Niemann J
    Front Bioeng Biotechnol; 2023; 11():1106292. PubMed ID: 36873352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel hybrid bioprocess strategy addressing key challenges of advanced biomanufacturing.
    Reger LN; Saballus M; Kappes A; Kampmann M; Wijffels RH; Martens DE; Niemann J
    Front Bioeng Biotechnol; 2023; 11():1211410. PubMed ID: 37456731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple Space-Time Yield in Discontinuous Antibody Biomanufacturing by Combination of Synergetic Process Intensification Strategies.
    Reger LN; Saballus M; Kampmann M; Wijffels RH; Martens DE; Niemann J
    Bioengineering (Basel); 2023 Dec; 10(12):. PubMed ID: 38135982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioreactor productivity and media cost comparison for different intensified cell culture processes.
    Xu S; Gavin J; Jiang R; Chen H
    Biotechnol Prog; 2017 Jul; 33(4):867-878. PubMed ID: 27977910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study.
    Xu J; Xu X; Huang C; Angelo J; Oliveira CL; Xu M; Xu X; Temel D; Ding J; Ghose S; Borys MC; Li ZJ
    MAbs; 2020 Jan; 12(1):1770669. PubMed ID: 32425110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-efficient cell clarification using an intensified fluidized bed centrifugation platform approach.
    Saballus M; Filz TJ; Pollard D; Kampmann M
    Biotechnol Bioeng; 2023 Jun; ():. PubMed ID: 37334463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-1 Perfusion Platform Development Using a Capacitance Probe for Biomanufacturing.
    Rittershaus ESC; Rehmann MS; Xu J; He Q; Hill C; Swanberg J; Borys MC; Li ZJ; Khetan A
    Bioengineering (Basel); 2022 Mar; 9(4):. PubMed ID: 35447688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process intensification to produce a difficult-to-express therapeutic enzyme by high cell density perfusion or enhanced fed-batch.
    Särnlund S; Jiang Y; Chotteau V
    Biotechnol Bioeng; 2021 Sep; 118(9):3533-3544. PubMed ID: 33914903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fed-batch performance profiles for mAb production using different intensified N - 1 seed strategies are CHO cell-line dependent.
    Tang Y; Xu J; Xu M; Huang Z; Santos J; He Q; Borys M; Khetan A
    Biotechnol Prog; 2024 Feb; ():e3446. PubMed ID: 38415506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-stage perfusion and ultra-high seeding cell density in CHO fed-batch culture: a case study for process intensification guided by systems biotechnology.
    Stepper L; Filser FA; Fischer S; Schaub J; Gorr I; Voges R
    Bioprocess Biosyst Eng; 2020 Aug; 43(8):1431-1443. PubMed ID: 32266469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GMP implementation of a hybrid continuous manufacturing process for a recombinant non-mAb protein-A case study.
    Natarajan V; Soice N; Mullen J; Bull D
    Biotechnol Prog; 2024 Mar; ():e3459. PubMed ID: 38553839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures.
    Hiller GW; Ovalle AM; Gagnon MP; Curran ML; Wang W
    Biotechnol Bioeng; 2017 Jul; 114(7):1438-1447. PubMed ID: 28128436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QbD-guided pharmaceutical development of Pembrolizumab biosimilar candidate PSG-024 propelled to industry meeting primary requirements of comparability to Keytruda®.
    Jaffar-Aghaei M; Khanipour F; Maghsoudi A; Sarvestani R; Mohammadian M; Maleki M; Havasi F; Rahmani H; Karagah AH; Kazemali MR
    Eur J Pharm Sci; 2022 Jun; 173():106171. PubMed ID: 35378209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid intensification of an established CHO cell fed-batch process.
    Schulze M; Niemann J; Wijffels RH; Matuszczyk J; Martens DE
    Biotechnol Prog; 2022 Jan; 38(1):e3213. PubMed ID: 34542245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the limits of conventional small-scale CHO fed-batch for accelerated on demand monoclonal antibody production.
    Mahé A; Martiné A; Fagète S; Girod PA
    Bioprocess Biosyst Eng; 2022 Feb; 45(2):297-307. PubMed ID: 34750672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protocol to transfer a fed-batch platform process into semi-perfusion mode: The benefit of automated small-scale bioreactors compared to shake flasks as scale-down model.
    Janoschek S; Schulze M; Zijlstra G; Greller G; Matuszczyk J
    Biotechnol Prog; 2019 Mar; 35(2):e2757. PubMed ID: 30479066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensified Influenza Virus Production in Suspension HEK293SF Cell Cultures Operated in Fed-Batch or Perfusion with Continuous Harvest.
    Silva CAT; Kamen AA; Henry O
    Vaccines (Basel); 2023 Dec; 11(12):. PubMed ID: 38140223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.
    Yang WC; Lu J; Kwiatkowski C; Yuan H; Kshirsagar R; Ryll T; Huang YM
    Biotechnol Prog; 2014; 30(3):616-25. PubMed ID: 24574326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty.
    Pollock J; Ho SV; Farid SS
    Biotechnol Bioeng; 2013 Jan; 110(1):206-19. PubMed ID: 22806692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-cell-density cultivations to increase MVA virus production.
    Vázquez-Ramírez D; Genzel Y; Jordan I; Sandig V; Reichl U
    Vaccine; 2018 May; 36(22):3124-3133. PubMed ID: 29433897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.