BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 36873878)

  • 1. Deep learning methods for drug response prediction in cancer: Predominant and emerging trends.
    Partin A; Brettin TS; Zhu Y; Narykov O; Clyde A; Overbeek J; Stevens RL
    Front Med (Lausanne); 2023; 10():1086097. PubMed ID: 36873878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Anticancer Drug Response With Deep Learning Constrained by Signaling Pathways.
    Zhang H; Chen Y; Li F
    Front Bioinform; 2021; 1():639349. PubMed ID: 36303766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized models and deep learning methods for drug response prediction in cancer treatments: a review.
    Hajim WI; Zainudin S; Mohd Daud K; Alheeti K
    PeerJ Comput Sci; 2024; 10():e1903. PubMed ID: 38660174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Learning Framework for Predicting Response to Therapy in Cancer.
    Sakellaropoulos T; Vougas K; Narang S; Koinis F; Kotsinas A; Polyzos A; Moss TJ; Piha-Paul S; Zhou H; Kardala E; Damianidou E; Alexopoulos LG; Aifantis I; Townsend PA; Panayiotidis MI; Sfikakis P; Bartek J; Fitzgerald RC; Thanos D; Mills Shaw KR; Petty R; Tsirigos A; Gorgoulis VG
    Cell Rep; 2019 Dec; 29(11):3367-3373.e4. PubMed ID: 31825821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How much can deep learning improve prediction of the responses to drugs in cancer cell lines?
    Chen Y; Zhang L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34529029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning for drug response prediction in cancer.
    Baptista D; Ferreira PG; Rocha M
    Brief Bioinform; 2021 Jan; 22(1):360-379. PubMed ID: 31950132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.
    Hauptmann T; Kramer S
    BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning approaches to drug response prediction: challenges and recent progress.
    Adam G; Rampášek L; Safikhani Z; Smirnov P; Haibe-Kains B; Goldenberg A
    NPJ Precis Oncol; 2020; 4():19. PubMed ID: 32566759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing deep learning architectures for sentiment analysis on drug reviews.
    Colón-Ruiz C; Segura-Bedmar I
    J Biomed Inform; 2020 Oct; 110():103539. PubMed ID: 32818665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating Multiomics Information in Deep Learning Architectures for Joint Actuarial Outcome Prediction in Non-Small Cell Lung Cancer Patients After Radiation Therapy.
    Cui S; Ten Haken RK; El Naqa I
    Int J Radiat Oncol Biol Phys; 2021 Jul; 110(3):893-904. PubMed ID: 33539966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches.
    Liu XY; Mei XY
    Front Bioeng Biotechnol; 2023; 11():1156372. PubMed ID: 37139048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on Deep Learning-driven Drug Discovery: Strategies, Tools and Applications.
    Sumathi S; Suganya K; Swathi K; Sudha B; Poornima A; Varghese CA; Aswathy R
    Curr Pharm Des; 2023 May; 29(13):1013-1025. PubMed ID: 37055908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants.
    Wang K; Abid MA; Rasheed A; Crossa J; Hearne S; Li H
    Mol Plant; 2023 Jan; 16(1):279-293. PubMed ID: 36366781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine.
    Feng F; Shen B; Mou X; Li Y; Li H
    J Genet Genomics; 2021 Jul; 48(7):540-551. PubMed ID: 34023295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review.
    Hong S; Zhou Y; Shang J; Xiao C; Sun J
    Comput Biol Med; 2020 Jul; 122():103801. PubMed ID: 32658725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.