BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36874135)

  • 1. Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy.
    Weissmann T; Huang Y; Fischer S; Roesch J; Mansoorian S; Ayala Gaona H; Gostian AO; Hecht M; Lettmaier S; Deloch L; Frey B; Gaipl US; Distel LV; Maier A; Iro H; Semrau S; Bert C; Fietkau R; Putz F
    Front Oncol; 2023; 13():1115258. PubMed ID: 36874135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach.
    Cardenas CE; Beadle BM; Garden AS; Skinner HD; Yang J; Rhee DJ; McCarroll RE; Netherton TJ; Gay SS; Zhang L; Court LE
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(3):801-812. PubMed ID: 33068690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning.
    Lucido JJ; DeWees TA; Leavitt TR; Anand A; Beltran CJ; Brooke MD; Buroker JR; Foote RL; Foss OR; Gleason AM; Hodge TL; Hughes CO; Hunzeker AE; Laack NN; Lenz TK; Livne M; Morigami M; Moseley DJ; Undahl LM; Patel Y; Tryggestad EJ; Walker MZ; Zverovitch A; Patel SH
    Front Oncol; 2023; 13():1137803. PubMed ID: 37091160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General and custom deep learning autosegmentation models for organs in head and neck, abdomen, and male pelvis.
    Amjad A; Xu J; Thill D; Lawton C; Hall W; Awan MJ; Shukla M; Erickson BA; Li XA
    Med Phys; 2022 Mar; 49(3):1686-1700. PubMed ID: 35094390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based segmentation in prostate radiation therapy using Monte Carlo simulated cone-beam computed tomography.
    Abbani N; Baudier T; Rit S; Franco FD; Okoli F; Jaouen V; Tilquin F; Barateau A; Simon A; de Crevoisier R; Bert J; Sarrut D
    Med Phys; 2022 Nov; 49(11):6930-6944. PubMed ID: 36000762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study.
    Nikolov S; Blackwell S; Zverovitch A; Mendes R; Livne M; De Fauw J; Patel Y; Meyer C; Askham H; Romera-Paredes B; Kelly C; Karthikesalingam A; Chu C; Carnell D; Boon C; D'Souza D; Moinuddin SA; Garie B; McQuinlan Y; Ireland S; Hampton K; Fuller K; Montgomery H; Rees G; Suleyman M; Back T; Hughes CO; Ledsam JR; Ronneberger O
    J Med Internet Res; 2021 Jul; 23(7):e26151. PubMed ID: 34255661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system.
    Costea M; Zlate A; Durand M; Baudier T; Grégoire V; Sarrut D; Biston MC
    Radiother Oncol; 2022 Dec; 177():61-70. PubMed ID: 36328093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical validation of deep learning algorithms for radiotherapy targeting of non-small-cell lung cancer: an observational study.
    Hosny A; Bitterman DS; Guthier CV; Qian JM; Roberts H; Perni S; Saraf A; Peng LC; Pashtan I; Ye Z; Kann BH; Kozono DE; Christiani D; Catalano PJ; Aerts HJWL; Mak RH
    Lancet Digit Health; 2022 Sep; 4(9):e657-e666. PubMed ID: 36028289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical Evaluation of Deep Learning for Tumor Delineation on
    Kovacs DG; Ladefoged CN; Andersen KF; Brittain JM; Christensen CB; Dejanovic D; Hansen NL; Loft A; Petersen JH; Reichkendler M; Andersen FL; Fischer BM
    J Nucl Med; 2024 Feb; 65(4):623-9. PubMed ID: 38388516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours.
    Fritscher KD; Peroni M; Zaffino P; Spadea MF; Schubert R; Sharp G
    Med Phys; 2014 May; 41(5):051910. PubMed ID: 24784389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images.
    Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y
    Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy.
    Byun HK; Chang JS; Choi MS; Chun J; Jung J; Jeong C; Kim JS; Chang Y; Chung SY; Lee S; Kim YB
    Radiat Oncol; 2021 Oct; 16(1):203. PubMed ID: 34649569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for elective neck delineation: More consistent and time efficient.
    van der Veen J; Willems S; Bollen H; Maes F; Nuyts S
    Radiother Oncol; 2020 Dec; 153():180-188. PubMed ID: 33065182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.
    Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P
    Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal Radiotherapy Target Volume Design.
    Weissmann T; Mansoorian S; May MS; Lettmaier S; Höfler D; Deloch L; Speer S; Balk M; Frey B; Gaipl US; Bert C; Distel LV; Walter F; Belka C; Semrau S; Iro H; Fietkau R; Huang Y; Putz F
    Cancers (Basel); 2023 Sep; 15(18):. PubMed ID: 37760588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.