BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36874135)

  • 61. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.
    Doshi T; Wilson C; Paterson C; Lamb C; James A; MacKenzie K; Soraghan J; Petropoulakis L; Di Caterina G; Grose D
    Clin Oncol (R Coll Radiol); 2017 Jan; 29(1):60-67. PubMed ID: 27780693
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer.
    Kawula M; Purice D; Li M; Vivar G; Ahmadi SA; Parodi K; Belka C; Landry G; Kurz C
    Radiat Oncol; 2022 Jan; 17(1):21. PubMed ID: 35101068
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Geometric and Dosimetric Evaluation of Deep Learning-Based Automatic Delineation on CBCT-Synthesized CT and Planning CT for Breast Cancer Adaptive Radiotherapy: A Multi-Institutional Study.
    Dai Z; Zhang Y; Zhu L; Tan J; Yang G; Zhang B; Cai C; Jin H; Meng H; Tan X; Jian W; Yang W; Wang X
    Front Oncol; 2021; 11():725507. PubMed ID: 34858813
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors.
    Kavur AE; Gezer NS; Barış M; Şahin Y; Özkan S; Baydar B; Yüksel U; Kılıkçıer Ç; Olut Ş; Bozdağı Akar G; Ünal G; Dicle O; Selver MA
    Diagn Interv Radiol; 2020 Jan; 26(1):11-21. PubMed ID: 31904568
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Deep learning-based automatic delineation of the hippocampus by MRI: geometric and dosimetric evaluation.
    Pan K; Zhao L; Gu S; Tang Y; Wang J; Yu W; Zhu L; Feng Q; Su R; Xu Z; Li X; Ding Z; Fu X; Ma S; Yan J; Kang S; Zhou T; Xia B
    Radiat Oncol; 2021 Jan; 16(1):12. PubMed ID: 33446238
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network.
    Dinkla AM; Florkow MC; Maspero M; Savenije MHF; Zijlstra F; Doornaert PAH; van Stralen M; Philippens MEP; van den Berg CAT; Seevinck PR
    Med Phys; 2019 Sep; 46(9):4095-4104. PubMed ID: 31206701
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Initial Evaluation of a Novel Cone-Beam CT-Based Semi-Automated Online Adaptive Radiotherapy System for Head and Neck Cancer Treatment - A Timing and Automation Quality Study.
    Yoon SW; Lin H; Alonso-Basanta M; Anderson N; Apinorasethkul O; Cooper K; Dong L; Kempsey B; Marcel J; Metz J; Scheuermann R; Li T
    Cureus; 2020 Aug; 12(8):e9660. PubMed ID: 32923257
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparative evaluation of a prototype deep learning algorithm for autosegmentation of normal tissues in head and neck radiotherapy.
    Koo J; Caudell JJ; Latifi K; Jordan P; Shen S; Adamson PM; Moros EG; Feygelman V
    Radiother Oncol; 2022 Sep; 174():52-58. PubMed ID: 35817322
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High through-plane resolution CT imaging with self-supervised deep learning.
    Xie H; Lei Y; Wang T; Tian Z; Roper J; Bradley JD; Curran WJ; Tang X; Liu T; Yang X
    Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34049297
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Scalable radiotherapy data curation infrastructure for deep-learning based autosegmentation of organs-at-risk: A case study in head and neck cancer.
    Tryggestad E; Anand A; Beltran C; Brooks J; Cimmiyotti J; Grimaldi N; Hodge T; Hunzeker A; Lucido JJ; Laack NN; Momoh R; Moseley DJ; Patel SH; Ridgway A; Seetamsetty S; Shiraishi S; Undahl L; Foote RL
    Front Oncol; 2022; 12():936134. PubMed ID: 36106100
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model.
    Gan Y; Xia Z; Xiong J; Zhao Q; Hu Y; Zhang J
    Med Phys; 2015 Jan; 42(1):14-27. PubMed ID: 25563244
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Deep-Learning-Based Automatic Segmentation of Head and Neck Organs for Radiation Therapy in Dogs.
    Park J; Choi B; Ko J; Chun J; Park I; Lee J; Kim J; Kim J; Eom K; Kim JS
    Front Vet Sci; 2021; 8():721612. PubMed ID: 34552975
    [No Abstract]   [Full Text] [Related]  

  • 75. Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions.
    van den Noort F; van der Vaart CH; Grob ATM; van de Waarsenburg MK; Slump CH; van Stralen M
    Ultrasound Obstet Gynecol; 2019 Aug; 54(2):270-275. PubMed ID: 30461079
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment.
    Kihara S; Koike Y; Takegawa H; Anetai Y; Nakamura S; Tanigawa N; Koizumi M
    Med Dosim; 2023 Spring; 48(1):20-24. PubMed ID: 36273950
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Improved accuracy of auto-segmentation of organs at risk in radiotherapy planning for nasopharyngeal carcinoma based on fully convolutional neural network deep learning.
    Peng Y; Liu Y; Shen G; Chen Z; Chen M; Miao J; Zhao C; Deng J; Qi Z; Deng X
    Oral Oncol; 2023 Jan; 136():106261. PubMed ID: 36446186
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System.
    Schelb P; Tavakoli AA; Tubtawee T; Hielscher T; Radtke JP; Görtz M; Schütz V; Kuder TA; Schimmöller L; Stenzinger A; Hohenfellner M; Schlemmer HP; Bonekamp D
    Rofo; 2021 May; 193(5):559-573. PubMed ID: 33212541
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Knowledge-based quality assurance of a comprehensive set of organ at risk contours for head and neck radiotherapy.
    Brooks J; Tryggestad E; Anand A; Beltran C; Foote R; Lucido JJ; Laack NN; Routman D; Patel SH; Seetamsetty S; Moseley D
    Front Oncol; 2024; 14():1295251. PubMed ID: 38487718
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.