These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36874164)

  • 1. Deep belief network-based approach for detecting Alzheimer's disease using the multi-omics data.
    Mahendran N; Vincent P M DR
    Comput Struct Biotechnol J; 2023; 21():1651-1660. PubMed ID: 36874164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture.
    Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B
    Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recursive Support Vector Machine Biomarker Selection for Alzheimer's Disease.
    Zhang F; Petersen M; Johnson L; Hall J; O'Bryant SE
    J Alzheimers Dis; 2021; 79(4):1691-1700. PubMed ID: 33492292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease.
    Zhang Y; Liu S
    Biomed Tech (Berl); 2018 Jul; 63(4):427-437. PubMed ID: 28622141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning and deep learning methods that use omics data for metastasis prediction.
    Albaradei S; Thafar M; Alsaedi A; Van Neste C; Gojobori T; Essack M; Gao X
    Comput Struct Biotechnol J; 2021; 19():5008-5018. PubMed ID: 34589181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritization of risk genes for Alzheimer's disease: an analysis framework using spatial and temporal gene expression data in the human brain based on support vector machine.
    Wang S; Fang X; Wen X; Yang C; Yang Y; Zhang T
    Front Genet; 2023; 14():1190863. PubMed ID: 37867597
    [No Abstract]   [Full Text] [Related]  

  • 7. 3D-Deep Learning Based Automatic Diagnosis of Alzheimer's Disease with Joint MMSE Prediction Using Resting-State fMRI.
    Duc NT; Ryu S; Qureshi MNI; Choi M; Lee KH; Lee B
    Neuroinformatics; 2020 Jan; 18(1):71-86. PubMed ID: 31093956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease.
    Ota K; Oishi N; Ito K; Fukuyama H; ;
    J Neurosci Methods; 2015 Dec; 256():168-83. PubMed ID: 26318777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer.
    Bhadra T; Mallik S; Hasan N; Zhao Z
    BMC Bioinformatics; 2022 Apr; 23(Suppl 3):153. PubMed ID: 35484501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer's disease.
    Mahendran N; P M DRV
    Comput Biol Med; 2022 Feb; 141():105056. PubMed ID: 34839903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE.
    Niijima S; Kuhara S
    BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PScL-HDeep: image-based prediction of protein subcellular location in human tissue using ensemble learning of handcrafted and deep learned features with two-layer feature selection.
    Ullah M; Han K; Hadi F; Xu J; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34337652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Prediction of Alzheimer's Disease Using Microarray Gene Expression Data.
    Abdelwahab MM; Al-Karawi KA; Semary HE
    Biomedicines; 2023 Dec; 11(12):. PubMed ID: 38137524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early detection of Alzheimer's disease using single nucleotide polymorphisms analysis based on gradient boosting tree.
    Ahmed H; Soliman H; Elmogy M
    Comput Biol Med; 2022 Jul; 146():105622. PubMed ID: 35751201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of diagnostic biomarkers in Alzheimer's disease by integrated bioinformatic analysis and machine learning strategies.
    Jin B; Cheng X; Fei G; Sang S; Zhong C
    Front Aging Neurosci; 2023; 15():1169620. PubMed ID: 37434738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OmicPredict: a framework for omics data prediction using ANOVA-Firefly algorithm for feature selection.
    Kaur P; Singh A; Chana I
    Comput Methods Biomech Biomed Engin; 2024 Nov; 27(14):1970-1983. PubMed ID: 37842810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease.
    Hao X; Bao Y; Guo Y; Yu M; Zhang D; Risacher SL; Saykin AJ; Yao X; Shen L;
    Med Image Anal; 2020 Feb; 60():101625. PubMed ID: 31841947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data.
    Jo T; Nho K; Saykin AJ
    Front Aging Neurosci; 2019; 11():220. PubMed ID: 31481890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.