These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36874590)

  • 1. Ultrafast measurement of laser-induced shock waves.
    Lokar Ž; Horvat D; Petelin J; Petkovšek R
    Photoacoustics; 2023 Apr; 30():100465. PubMed ID: 36874590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized Measurement of a Sub-Nanosecond Shockwave Pressure Rise Time.
    Petelin J; Lokar Z; Horvat D; Petkovsek R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):369-376. PubMed ID: 34559647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Basic Physics of Waves, Soundwaves, and Shockwaves for Erectile Dysfunction.
    Katz JE; Clavijo RI; Rizk P; Ramasamy R
    Sex Med Rev; 2020 Jan; 8(1):100-105. PubMed ID: 31735700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-frame multi-exposure shock wave imaging and pressure measurements.
    Mur J; Reuter F; Kočica JJ; Lokar Ž; Petelin J; Agrež V; Ohl CD; Petkovšek R
    Opt Express; 2022 Oct; 30(21):37664-37674. PubMed ID: 36258350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements.
    Rad AJ; Ueberle F; Krueger K
    Rev Sci Instrum; 2014 Jan; 85(1):014902. PubMed ID: 24517798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On fiber optic probe hydrophone measurements in a cavitating liquid.
    Zijlstra A; Ohl CD
    J Acoust Soc Am; 2008 Jan; 123(1):29-32. PubMed ID: 18177133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid and non-invasive method for measuring the peak positive pressure of HIFU fields by a laser beam.
    Wang H; Zeng D; Chen Z; Yang Z
    Sci Rep; 2017 Apr; 7(1):850. PubMed ID: 28404996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of nanosecond laser-induced shock waves in water using multiple excitation beams.
    Yang Z; Bao H; Dai L; Zhang H; Lu J
    Opt Express; 2023 Jun; 31(13):21845-21862. PubMed ID: 37381272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo pressure measurements of lithotripsy shock waves in pigs.
    Cleveland RO; Lifshitz DA; Connors BA; Evan AP; Willis LR; Crum LA
    Ultrasound Med Biol; 1998 Feb; 24(2):293-306. PubMed ID: 9550188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization.
    Smith N; Sankin GN; Simmons WN; Nanke R; Fehre J; Zhong P
    Rev Sci Instrum; 2012 Jan; 83(1):014301. PubMed ID: 22299970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
    Klaseboer E; Fong SW; Turangan CK; Khoo BC; Szeri AJ; Calvisi ML; Sankin GN; Zhong P
    J Fluid Mech; 2007; 593():33-56. PubMed ID: 19018296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic hydrophone for pressure determination of shock wave pulses.
    Etienne J; Filipczyński L; Kujawska T; Zienkiewicz B
    Ultrasound Med Biol; 1997; 23(5):747-54. PubMed ID: 9253822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of femtosecond laser-induced shockwaves in air.
    Koritsoglou O; Loison D; Uteza O; Mouskeftaras A
    Opt Express; 2022 Oct; 30(21):37407-37415. PubMed ID: 36258329
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Rassweiler J; Rieker P; Pecha R; Dressel M; Rassweiler-Seyfried MC
    J Endourol; 2022 Feb; 36(2):266-272. PubMed ID: 34314251
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.
    Cranch GA; Lunsford R; Grün J; Weaver J; Compton S; May M; Kostinski N
    Appl Opt; 2013 Nov; 52(32):7791-6. PubMed ID: 24216739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock-induced collapse of a gas bubble in shockwave lithotripsy.
    Johnsen E; Colonius T
    J Acoust Soc Am; 2008 Oct; 124(4):2011-20. PubMed ID: 19062841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock physics and shadowgraphic measurements of laser-produced cerium plasmas.
    Kwapis EH; Hewitt M; Hartig KC
    Opt Express; 2023 Mar; 31(6):10694-10708. PubMed ID: 37157611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: A first proof-of-concept study.
    Pahk KJ
    Ultrason Sonochem; 2021 Sep; 77():105699. PubMed ID: 34371476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time.
    Zubalic E; Vella D; Babnik A; Jezeršek M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.