These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36874839)

  • 1. Does training with blurred images bring convolutional neural networks closer to humans with respect to robust object recognition and internal representations?
    Yoshihara S; Fukiage T; Nishida S
    Front Psychol; 2023; 14():1047694. PubMed ID: 36874839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing.
    Jang H; Tong F
    J Vis; 2021 Nov; 21(12):6. PubMed ID: 34767621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks.
    Jang H; Tong F
    bioRxiv; 2023 Jul; ():. PubMed ID: 37577646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks.
    Jang H; Tong F
    Nat Commun; 2024 Mar; 15(1):1989. PubMed ID: 38443349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding transformation tolerant visual object representations in the human brain and convolutional neural networks.
    Xu Y; Vaziri-Pashkam M
    Neuroimage; 2022 Nov; 263():119635. PubMed ID: 36116617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human peripheral blur is optimal for object recognition.
    Pramod RT; Katti H; Arun SP
    Vision Res; 2022 Nov; 200():108083. PubMed ID: 35830763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of superordinate labels yields more robust and human-like visual representations in convolutional neural networks.
    Ahn S; Zelinsky GJ; Lupyan G
    J Vis; 2021 Dec; 21(13):13. PubMed ID: 34967860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From photos to sketches - how humans and deep neural networks process objects across different levels of visual abstraction.
    Singer JJD; Seeliger K; Kietzmann TC; Hebart MN
    J Vis; 2022 Feb; 22(2):4. PubMed ID: 35129578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel feature-scrambling approach reveals the capacity of convolutional neural networks to learn spatial relations.
    Farahat A; Effenberger F; Vinck M
    Neural Netw; 2023 Oct; 167():400-414. PubMed ID: 37673027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision.
    Avberšek LK; Zeman A; Op de Beeck H
    J Vis; 2021 Sep; 21(10):14. PubMed ID: 34533580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    He K; Zhang X; Ren S; Sun J
    IEEE Trans Pattern Anal Mach Intell; 2015 Sep; 37(9):1904-16. PubMed ID: 26353135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LBP-Based Segmentation of Defocus Blur.
    Xin Yi ; Eramian M
    IEEE Trans Image Process; 2016 Apr; 25(4):1626-38. PubMed ID: 26886995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficient Defocus Blur Segmentation Scheme Based on Hybrid LTP and PCNN.
    Basar S; Waheed A; Ali M; Zahid S; Zareei M; Biswal RR
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representations of regular and irregular shapes by deep Convolutional Neural Networks, monkey inferotemporal neurons and human judgments.
    Kalfas I; Vinken K; Vogels R
    PLoS Comput Biol; 2018 Oct; 14(10):e1006557. PubMed ID: 30365485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hiding a plane with a pixel: examining shape-bias in CNNs and the benefit of building in biological constraints.
    Malhotra G; Evans BD; Bowers JS
    Vision Res; 2020 Sep; 174():57-68. PubMed ID: 32599343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer of Learning in the Convolutional Neural Networks on Classifying Geometric Shapes Based on Local or Global Invariants.
    Zheng Y; Huang J; Chen T; Ou Y; Zhou W
    Front Comput Neurosci; 2021; 15():637144. PubMed ID: 33679359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.