These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36874839)

  • 41. Blur-metric-based resolution enhancement of computationally reconstructed integral images.
    Lee KJ; Hwang DC; Kim SC; Kim ES
    Appl Opt; 2008 May; 47(15):2859-69. PubMed ID: 18493293
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Composite Object Relation Modeling for Few-Shot Scene Recognition.
    Song X; Liu C; Zeng H; Zhu Y; Chen G; Qin X; Jiang S
    IEEE Trans Image Process; 2023; 32():5678-5691. PubMed ID: 37812539
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-resolved correspondences between deep neural network layers and EEG measurements in object processing.
    Kong NCL; Kaneshiro B; Yamins DLK; Norcia AM
    Vision Res; 2020 Jul; 172():27-45. PubMed ID: 32388211
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sharpening of drifting, blurred images.
    Bex PJ; Edgar GK; Smith AT
    Vision Res; 1995 Sep; 35(18):2539-46. PubMed ID: 7483298
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The contribution of object identity and configuration to scene representation in convolutional neural networks.
    Tang K; Chin M; Chun M; Xu Y
    PLoS One; 2022; 17(6):e0270667. PubMed ID: 35763531
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models.
    Azzopardi G; Petkov N
    Front Comput Neurosci; 2014; 8():80. PubMed ID: 25126068
    [TBL] [Abstract][Full Text] [Related]  

  • 48. General object-based features account for letter perception.
    Janini D; Hamblin C; Deza A; Konkle T
    PLoS Comput Biol; 2022 Sep; 18(9):e1010522. PubMed ID: 36155642
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models.
    Khaligh-Razavi SM; Henriksson L; Kay K; Kriegeskorte N
    J Math Psychol; 2017 Feb; 76(Pt B):184-197. PubMed ID: 28298702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The developmental trajectory of object recognition robustness: Children are like small adults but unlike big deep neural networks.
    Huber LS; Geirhos R; Wichmann FA
    J Vis; 2023 Jul; 23(7):4. PubMed ID: 37410494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A dataset for evaluating one-shot categorization of novel object classes.
    Morgenstern Y; Schmidt F; Fleming RW
    Data Brief; 2020 Apr; 29():105302. PubMed ID: 32140517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep Neural Networks as a Computational Model for Human Shape Sensitivity.
    Kubilius J; Bracci S; Op de Beeck HP
    PLoS Comput Biol; 2016 Apr; 12(4):e1004896. PubMed ID: 27124699
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contextual associations represented both in neural networks and human behavior.
    Aminoff EM; Baror S; Roginek EW; Leeds DD
    Sci Rep; 2022 Apr; 12(1):5570. PubMed ID: 35368046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human shape representations are not an emergent property of learning to classify objects.
    Malhotra G; Dujmović M; Hummel J; Bowers JS
    J Exp Psychol Gen; 2023 Dec; 152(12):3380-3402. PubMed ID: 37695326
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Training Very Deep CNNs for General Non-Blind Deconvolution.
    Wang R; Tao D
    IEEE Trans Image Process; 2018 Mar; ():. PubMed ID: 29993866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Convolutional Neural Networks-Based Approach for Texture Directionality Detection.
    Kociołek M; Kozłowski M; Cardone A
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062522
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adversarial Gaussian Denoiser for Multiple-Level Image Denoising.
    Khan A; Jin W; Haider A; Rahman M; Wang D
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Color and luminance processing in V1 complex cells and artificial neural networks.
    Bun LM; Horwitz GD
    Color Res Appl; 2023; 48(6):841-852. PubMed ID: 38145033
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-world size of objects serves as an axis of object space.
    Huang T; Song Y; Liu J
    Commun Biol; 2022 Jul; 5(1):749. PubMed ID: 35896715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human EEG and artificial neural networks reveal disentangled representations of object real-world size in natural images.
    Lu Z; Golomb JD
    bioRxiv; 2024 Mar; ():. PubMed ID: 37662197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.