These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 36875039)

  • 1. Impact of different ground-based microgravity models on human sensorimotor system.
    Saveko A; Bekreneva M; Ponomarev I; Zelenskaya I; Riabova A; Shigueva T; Kitov V; Abu Sheli N; Nosikova I; Rukavishnikov I; Sayenko D; Tomilovskaya E
    Front Physiol; 2023; 14():1085545. PubMed ID: 36875039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrigendum: Impact of different ground-based microgravity models on human sensorimotor system.
    Saveko A; Bekreneva M; Ponomarev I; Zelenskaya I; Riabova A; Shigueva T; Kitov V; Abu Sheli N; Nosikova I; Rukavishnikov I; Sayenko D; Tomilovskaya E
    Front Physiol; 2023; 14():1281392. PubMed ID: 37711464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground-Based Analogs for Human Spaceflight.
    Pandiarajan M; Hargens AR
    Front Physiol; 2020; 11():716. PubMed ID: 32655420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity.
    Marušič U; Meeusen R; Pišot R; Kavcic V
    Eur J Sport Sci; 2014; 14(8):813-22. PubMed ID: 24734884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry Immersion as a Ground-Based Model of Microgravity Physiological Effects.
    Tomilovskaya E; Shigueva T; Sayenko D; Rukavishnikov I; Kozlovskaya I
    Front Physiol; 2019; 10():284. PubMed ID: 30971938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation.
    Kermorgant M; Nasr N; Czosnyka M; Arvanitis DN; Hélissen O; Senard JM; Pavy-Le Traon A
    Front Physiol; 2020; 11():778. PubMed ID: 32719617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term dry immersion: review and prospects.
    Navasiolava NM; Custaud MA; Tomilovskaya ES; Larina IM; Mano T; Gauquelin-Koch G; Gharib C; Kozlovskaya IB
    Eur J Appl Physiol; 2011 Jul; 111(7):1235-60. PubMed ID: 21161267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Fundamental and applied objectives of investigations in immersion].
    Kozlovskaia IB
    Aviakosm Ekolog Med; 2008; 42(5):3-7. PubMed ID: 19192530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analogs of microgravity: head-down tilt and water immersion.
    Watenpaugh DE
    J Appl Physiol (1985); 2016 Apr; 120(8):904-14. PubMed ID: 26869710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-duration bed rest as an analog to microgravity.
    Hargens AR; Vico L
    J Appl Physiol (1985); 2016 Apr; 120(8):891-903. PubMed ID: 26893033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive assessment of physiological responses in women during the ESA dry immersion VIVALDI microgravity simulation.
    Robin A; Van Ombergen A; Laurens C; Bergouignan A; Vico L; Linossier MT; Pavy-Le Traon A; Kermorgant M; Chopard A; Py G; Green DA; Tipton M; Choukér A; Denise P; Normand H; Blanc S; Simon C; Rosnet E; Larcher F; Fernandez P; de Glisezinski I; Larrouy D; Harant-Farrugia I; Antunes I; Gauquelin-Koch G; Bareille MP; Billette De Villemeur R; Custaud MA; Navasiolava N
    Nat Commun; 2023 Oct; 14(1):6311. PubMed ID: 37813884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microgravity and autonomic nervous system].
    Iwase S; Mano T
    Nihon Rinsho; 2000 Aug; 58(8):1604-12. PubMed ID: 10944920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomic neural functions in space.
    Mano T
    Curr Pharm Biotechnol; 2005 Aug; 6(4):319-24. PubMed ID: 16101470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases.
    Koppelmans V; Erdeniz B; De Dios YE; Wood SJ; Reuter-Lorenz PA; Kofman I; Bloomberg JJ; Mulavara AP; Seidler RD
    BMC Neurol; 2013 Dec; 13():205. PubMed ID: 24350728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New modification of suspension hypokinesia in rats.
    Noskovic P; Ahlers I; Racek L
    Physiol Bohemoslov; 1990; 39(5):471-4. PubMed ID: 2150992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of spaceflight and microgravity on the human brain.
    Van Ombergen A; Demertzi A; Tomilovskaya E; Jeurissen B; Sijbers J; Kozlovskaya IB; Parizel PM; Van de Heyning PH; Sunaert S; Laureys S; Wuyts FL
    J Neurol; 2017 Oct; 264(Suppl 1):18-22. PubMed ID: 28271409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human gut microbiome and metabolite dynamics under simulated microgravity.
    Ramos-Nascimento A; Grenga L; Haange SB; Himmelmann A; Arndt FS; Ly YT; Miotello G; Pible O; Jehmlich N; Engelmann B; von Bergen M; Mulder E; Frings-Meuthen P; Hellweg CE; Jordan J; Rolle-Kampczyk U; Armengaud J; Moeller R
    Gut Microbes; 2023 Dec; 15(2):2259033. PubMed ID: 37749878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Lungs in Space: A Review of Current Knowledge and Methodologies.
    Smith MB; Chen H; Oliver BGG
    Cells; 2024 Jul; 13(13):. PubMed ID: 38995005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.