These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36875732)
1. Mycorrhizal symbiosis alleviate salinity stress in pistachio plants by altering gene expression and antioxidant pathways. Afshar AS; Abbaspour H Physiol Mol Biol Plants; 2023 Feb; 29(2):263-276. PubMed ID: 36875732 [TBL] [Abstract][Full Text] [Related]
2. Arbuscular mycorrhizal symbiosis regulates the physiological responses, ion distribution and relevant gene expression to trigger salt stress tolerance in pistachio. Abbaspour H; Pour FSN; Abdel-Wahhab MA Physiol Mol Biol Plants; 2021 Aug; 27(8):1765-1778. PubMed ID: 34539115 [TBL] [Abstract][Full Text] [Related]
3. Effects of He F; Sheng M; Tang M Front Plant Sci; 2017; 8():183. PubMed ID: 28261240 [TBL] [Abstract][Full Text] [Related]
4. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Chang W; Sui X; Fan XX; Jia TT; Song FQ Front Microbiol; 2018; 9():652. PubMed ID: 29675008 [No Abstract] [Full Text] [Related]
5. Arbuscular mycorrhizal fungus Rhizophagus irregularis alleviates drought stress in soybean with overexpressing the GmSPL9d gene by promoting photosynthetic apparatus and regulating the antioxidant system. Begum N; Xiao Y; Wang L; Li D; Irshad A; Zhao T Microbiol Res; 2023 Aug; 273():127398. PubMed ID: 37167733 [TBL] [Abstract][Full Text] [Related]
6. Plant Salinity Tolerance Conferred by Arbuscular Mycorrhizal Fungi and Associated Mechanisms: A Meta-Analysis. Dastogeer KMG; Zahan MI; Tahjib-Ul-Arif M; Akter MA; Okazaki S Front Plant Sci; 2020; 11():588550. PubMed ID: 33362816 [TBL] [Abstract][Full Text] [Related]
7. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Pandey R; Garg N Mycorrhiza; 2017 Oct; 27(7):669-682. PubMed ID: 28593465 [TBL] [Abstract][Full Text] [Related]
8. Co-Inoculation with Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes under Drought Stress: Synergistic or Competitive Effects on Maize Growth, Photosynthesis, Root Hydraulic Properties and Aquaporins? Gong M; Bai N; Wang P; Su J; Chang Q; Zhang Q Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514211 [TBL] [Abstract][Full Text] [Related]
9. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Abbaspour H; Saeidi-Sar S; Afshari H; Abdel-Wahhab MA J Plant Physiol; 2012 May; 169(7):704-9. PubMed ID: 22418429 [TBL] [Abstract][Full Text] [Related]
10. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Navarro JM; Pérez-Tornero O; Morte A J Plant Physiol; 2014 Jan; 171(1):76-85. PubMed ID: 23859560 [TBL] [Abstract][Full Text] [Related]
11. Funneliformis constrictum modulates polyamine metabolism to enhance tolerance of Zea mays L. to salinity. El-Sawah AM; Abdel-Fattah GG; Holford P; Korany SM; Alsherif EA; AbdElgawad H; Ulhassan Z; Jośko I; Ali B; Sheteiwy MS Microbiol Res; 2023 Jan; 266():127254. PubMed ID: 36371871 [TBL] [Abstract][Full Text] [Related]
12. Salt stress mitigation in Gritli T; Boubakri H; Essahibi A; Hsouna J; Ilahi H; Didier R; Mnasri B Physiol Mol Biol Plants; 2022 Jun; 28(6):1191-1206. PubMed ID: 35910445 [TBL] [Abstract][Full Text] [Related]
13. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhizal fungi enhance drought resistance in Luo C; Li Z; Shi Y; Gao Y; Xu Y; Zhang Y; Chu H PeerJ; 2024; 12():e17849. PubMed ID: 39131625 [TBL] [Abstract][Full Text] [Related]
15. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular Mycorrhizae under NaCl stress. He Z; He C; Zhang Z; Zou Z; Wang H Colloids Surf B Biointerfaces; 2007 Oct; 59(2):128-33. PubMed ID: 17560092 [TBL] [Abstract][Full Text] [Related]
16. Mycorrhizosphere bacteria inhibit chromium uptake and phytotoxicity by regulating proline metabolism, antioxidant defense system, and aquaporin gene expression in tomato. Shah T; Khan Z; Alahmadi TA; Imran A; Asad M; Khan SR; Ansari MJ Environ Sci Pollut Res Int; 2024 Apr; 31(17):24836-24850. PubMed ID: 38456983 [TBL] [Abstract][Full Text] [Related]
17. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Pedranzani H; Rodríguez-Rivera M; Gutiérrez M; Porcel R; Hause B; Ruiz-Lozano JM Mycorrhiza; 2016 Feb; 26(2):141-52. PubMed ID: 26184604 [TBL] [Abstract][Full Text] [Related]
18. Arbuscular mycorrhizal fungi improve growth and tolerance of Zhou Y; Wei M; Li Y; Tang M; Zhang H Int J Phytoremediation; 2023; 25(14):1967-1978. PubMed ID: 37203166 [TBL] [Abstract][Full Text] [Related]
19. Arbuscular mycorrhizal fungi alleviates salt stress in Zong J; Zhang Z; Huang P; Yang Y Front Microbiol; 2023; 14():1138771. PubMed ID: 37007515 [TBL] [Abstract][Full Text] [Related]
20. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis. Chandrasekaran M; Kim K; Krishnamoorthy R; Walitang D; Sundaram S; Joe MM; Selvakumar G; Hu S; Oh SH; Sa T Front Microbiol; 2016; 7():1246. PubMed ID: 27563299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]