These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36875785)

  • 1. Effective transport network driven by tortuosity gradient enables high-electrochem-active solid-state batteries.
    Liu QS; An HW; Wang XF; Kong FP; Sun YC; Gong YX; Lou SF; Shi YF; Sun N; Deng B; Wang J; Wang JJ
    Natl Sci Rev; 2023 Mar; 10(3):nwac272. PubMed ID: 36875785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Tortuosity Thick Electrodes with Active Materials Gradient Design for Enhanced Energy Storage.
    Wu J; Ju Z; Zhang X; Xu X; Takeuchi KJ; Marschilok AC; Takeuchi ES; Yu G
    ACS Nano; 2022 Mar; 16(3):4805-4812. PubMed ID: 35234442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tortuosity Engineering for Improved Charge Storage Kinetics in High-Areal-Capacity Battery Electrodes.
    Ju Z; Zhang X; Wu J; King ST; Chang CC; Yan S; Xue Y; Takeuchi KJ; Marschilok AC; Wang L; Takeuchi ES; Yu G
    Nano Lett; 2022 Aug; 22(16):6700-6708. PubMed ID: 35921591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dense All-Electrochem-Active Electrodes for All-Solid-State Lithium Batteries.
    Li M; Liu T; Shi Z; Xue W; Hu YS; Li H; Huang X; Li J; Suo L; Chen L
    Adv Mater; 2021 Jul; 33(26):e2008723. PubMed ID: 33998714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode Architecture Design to Promote Charge-Transport Kinetics in High-Loading and High-Energy Lithium-Based Batteries.
    Ji W; Qu H; Zhang X; Zheng D; Qu D
    Small Methods; 2021 Oct; 5(10):e2100518. PubMed ID: 34927941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction to: Effective transport network driven by tortuosity gradient enables high-electrochem-active solid-state batteries.
    Liu QS; An HW; Wang XF; Kong FP; Sun YC; Gong YX; Lou SF; Shi YF; Sun N; Deng B; Wang J; Wang JJ
    Natl Sci Rev; 2023 Jul; 10(7):nwad135. PubMed ID: 37266556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation.
    Luo Y; Bai Y; Mistry A; Zhang Y; Zhao D; Sarkar S; Handy JV; Rezaei S; Chuang AC; Carrillo L; Wiaderek K; Pharr M; Xie K; Mukherjee PP; Xu BX; Banerjee S
    Nat Mater; 2022 Feb; 21(2):217-227. PubMed ID: 34824396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Tortuous, Highly Conductive, and High-Areal-Capacity Battery Electrodes Enabled by Through-thickness Aligned Carbon Fiber Framework.
    Shi B; Shang Y; Pei Y; Pei S; Wang L; Heider D; Zhao YY; Zheng C; Yang B; Yarlagadda S; Chou TW; Fu KK
    Nano Lett; 2020 Jul; 20(7):5504-5512. PubMed ID: 32551672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing transport limitations in thick sintered battery electrodes with neutron imaging.
    Nie Z; Ong S; Hussey DS; LaManna JM; Jacobson DL; Koenig GM
    Mol Syst Des Eng; 2020; 5():. PubMed ID: 35003760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes.
    Zhang X; Hui Z; King S; Wang L; Ju Z; Wu J; Takeuchi KJ; Marschilok AC; West AC; Takeuchi ES; Yu G
    Nano Lett; 2021 Jul; 21(13):5896-5904. PubMed ID: 34197125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Electrode Architecture Enabling Ultrahigh-Capacity LiFePO
    Wang H; Li J; Miao Z; Huang K; Liao Y; Xu X; Meng J; Li Z; Huang Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26824-26833. PubMed ID: 37218051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics or Transport: Whither Goes the Solid-State Battery Cathode?
    Naik KG; Vishnugopi BS; Mukherjee PP
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29754-29765. PubMed ID: 35732069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thick Sintered Electrode Lithium-Ion Battery Discharge Simulations: Incorporating Lithiation-Dependent Electronic Conductivity and Lithiation Gradient Due to Charge Cycle.
    Cai C; Nie Z; Robinson JP; Hussey DS; LaManna JM; Jacobson DL; Koenig GM
    J Electrochem Soc; 2020 Nov; 167(14):. PubMed ID: 34876705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-coordinated cellulose ion conductors for solid-state batteries.
    Yang C; Wu Q; Xie W; Zhang X; Brozena A; Zheng J; Garaga MN; Ko BH; Mao Y; He S; Gao Y; Wang P; Tyagi M; Jiao F; Briber R; Albertus P; Wang C; Greenbaum S; Hu YY; Isogai A; Winter M; Xu K; Qi Y; Hu L
    Nature; 2021 Oct; 598(7882):590-596. PubMed ID: 34671167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-Thick Electrodes with Enhanced Transport Kinetics via In Situ Epitaxial Heterogeneous Interfaces for High Areal-Capacity Lithium Ion Batteries.
    Zhou S; Huang P; Xiong T; Yang F; Yang H; Huang Y; Li D; Deng J; Balogun MJT
    Small; 2021 Jul; 17(26):e2100778. PubMed ID: 34060232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient Design for High-Energy and High-Power Batteries.
    Wu J; Ju Z; Zhang X; Marschilok AC; Takeuchi KJ; Wang H; Takeuchi ES; Yu G
    Adv Mater; 2022 Jul; 34(29):e2202780. PubMed ID: 35644837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoting Transport Kinetics in Li-Ion Battery with Aligned Porous Electrode Architectures.
    Zhang X; Ju Z; Housel LM; Wang L; Zhu Y; Singh G; Sadique N; Takeuchi KJ; Takeuchi ES; Marschilok AC; Yu G
    Nano Lett; 2019 Nov; 19(11):8255-8261. PubMed ID: 31661622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh-Capacity and Scalable Architected Battery Electrodes
    Wu J; Ju Z; Zhang X; Quilty C; Takeuchi KJ; Bock DC; Marschilok AC; Takeuchi ES; Yu G
    ACS Nano; 2021 Dec; 15(12):19109-19118. PubMed ID: 34410706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries.
    Bielefeld A; Weber DA; Janek J
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12821-12833. PubMed ID: 32093477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.