These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36875880)

  • 1. Initial yield of hydrated electron production from water radiolysis based on first-principles calculation.
    Kai T; Toigawa T; Matsuya Y; Hirata Y; Tezuka T; Tsuchida H; Yokoya A
    RSC Adv; 2023 Mar; 13(11):7076-7086. PubMed ID: 36875880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation and investigation of reactive species yields of Geant4-DNA chemistry models.
    Peukert D; Incerti S; Kempson I; Douglass M; Karamitros M; Baldacchino G; Bezak E
    Med Phys; 2019 Feb; 46(2):983-998. PubMed ID: 30536689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A step-by-step simulation code for estimating yields of water radiolysis species based on electron track-structure mode in the PHITS code.
    Matsuya Y; Yoshii Y; Kusumoto T; Akamatsu K; Hirata Y; Sato T; Kai T
    Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38157551
    [No Abstract]   [Full Text] [Related]  

  • 4. Self-radiolysis of tritiated water. 4. The scavenging effect of azide ions (N
    Sanguanmith S; Meesungnoen J; Stuart CR; Causey P; Jay-Gerin JP
    RSC Adv; 2018 Jan; 8(5):2449-2458. PubMed ID: 35541471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrated electron yields in the heavy ion radiolysis of water.
    Laverne JA; Stefanić I; Pimblott SM
    J Phys Chem A; 2005 Oct; 109(42):9393-401. PubMed ID: 16866387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes.
    Ali Y; Auzel L; Monini C; Kriachok K; Létang JM; Testa E; Maigne L; Beuve M
    Med Phys; 2022 May; 49(5):3457-3469. PubMed ID: 35318686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast Processes Occurring in Radiolysis of Highly Concentrated Solutions of Nucleosides/Tides.
    Ma J; Denisov SA; Adhikary A; Mostafavi M
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31597345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse Radiolysis Studies for Mechanism in Biochemical Redox Reactions.
    Kobayashi K
    Chem Rev; 2019 Mar; 119(6):4413-4462. PubMed ID: 30741537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the effect of oxygen on the chemical stage of water radiolysis using GPU-based microscopic Monte Carlo simulations, with an application in FLASH radiotherapy.
    Lai Y; Jia X; Chi Y
    Phys Med Biol; 2021 Jan; 66(2):025004. PubMed ID: 33171449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield.
    Peukert D; Kempson I; Douglass M; Bezak E
    Med Phys; 2020 Feb; 47(2):651-661. PubMed ID: 31725910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy.
    Alanazi A; Meesungnoen J; Jay-Gerin JP
    Radiat Res; 2021 Feb; 195(2):149-162. PubMed ID: 33300999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of low-energy electrons in the high-energy radiolysis of condensed CF3I.
    Rajappan M; Zhu LL; Wang J; Gardner G; Bu K; Mai H; Laupheimer M; Shyur Y; Abu Bakar NS; Skinner-Hall SK; Kim C; Haskins JM; Arumainayagam CR
    J Phys Condens Matter; 2010 Mar; 22(8):084006. PubMed ID: 21389382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles simulation of an ejected electron produced by monochromatic deposition energy to water at the femtosecond order.
    Kai T; Toigawa T; Matsuya Y; Hirata Y; Tezuka T; Tsuchida H; Yokoya A
    RSC Adv; 2023 Oct; 13(46):32371-32380. PubMed ID: 37928859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deceleration processes of secondary electrons produced by a high-energy Auger electron in a biological context.
    Kai T; Yokoya A; Ukai M; Fujii K; Watanabe R
    Int J Radiat Biol; 2016 Nov; 92(11):654-659. PubMed ID: 27332896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo calculation of the primary radical and molecular yields of liquid water radiolysis in the linear energy transfer range 0.3-6.5 keV/micrometer: application to 137Cs gamma rays.
    Meesungnoen J; Benrahmoune M; Filali-Mouhim A; Mankhetkorn S; Jay-Gerin JP
    Radiat Res; 2001 Feb; 155(2):269-78. PubMed ID: 11175661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between low energy electrons and DNA: a perspective from first-principles simulations.
    Kohanoff J; McAllister M; Tribello GA; Gu B
    J Phys Condens Matter; 2017 Sep; 29(38):383001. PubMed ID: 28617676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of the physicochemical process in water photolysis uncovered by a computer simulation.
    Kai T; Toigawa T; Ukai M; Fujii K; Watanabe R; Yokoya A
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37102443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses.
    Svoboda V; Michiels R; LaForge AC; Med J; Stienkemeier F; Slavíček P; Wörner HJ
    Sci Adv; 2020 Jan; 6(3):eaaz0385. PubMed ID: 32010776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.