BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36876319)

  • 1. Broadband circular dichroism in chiral plasmonic woodpiles.
    Abdennadher B; Iseli R; Steiner U; Saba M
    Appl Phys A Mater Sci Process; 2023; 129(3):229. PubMed ID: 36876319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers.
    Kong XT; Khosravi Khorashad L; Wang Z; Govorov AO
    Nano Lett; 2018 Mar; 18(3):2001-2008. PubMed ID: 29420903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband infrared circular dichroism in chiral metasurface absorbers.
    Ouyang L; Rosenmann D; Czaplewski DA; Gao J; Yang X
    Nanotechnology; 2020 May; 31(29):295203. PubMed ID: 32289769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral graphene plasmonic Archimedes' spiral nanostructure with tunable circular dichroism and enhanced sensing performance.
    Zhou H; Su S; Ma H; Zhao Z; Lin Z; Qiu W; Qiu P; Huang B; Kan Q
    Opt Express; 2020 Oct; 28(21):31954-31966. PubMed ID: 33115159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Chiral Sensing at the Few-Molecule Level Using Negative Index Metamaterial Plasmonic Nanocuvettes.
    Indukuri SRKC; Frydendahl C; Sharma N; Mazurski N; Paltiel Y; Levy U
    ACS Nano; 2022 Oct; 16(10):17289-17297. PubMed ID: 36194513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared chiral plasmonic metasurface absorbers.
    Ouyang L; Wang W; Rosenmann D; Czaplewski DA; Gao J; Yang X
    Opt Express; 2018 Nov; 26(24):31484-31489. PubMed ID: 30650733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral plasmonic metasurface absorbers in the mid-infrared wavelength range.
    Mahmud MS; Rosenmann D; Czaplewski DA; Gao J; Yang X
    Opt Lett; 2020 Oct; 45(19):5372-5375. PubMed ID: 33001896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular Dichroism Studies on Plasmonic Nanostructures.
    Wang X; Tang Z
    Small; 2017 Jan; 13(1):. PubMed ID: 27273904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular dichroism enhancement in plasmonic nanorod metamaterials.
    Vestler D; Shishkin I; Gurvitz EA; Nasir ME; Ben-Moshe A; Slobozhanyuk AP; Krasavin AV; Levi-Belenkova T; Shalin AS; Ginzburg P; Markovich G; Zayats AV
    Opt Express; 2018 Jul; 26(14):17841-17848. PubMed ID: 30114069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of Gold Nanoparticles into Chiral Superstructures Driven by Circularly Polarized Light.
    Kim JY; Yeom J; Zhao G; Calcaterra H; Munn J; Zhang P; Kotov N
    J Am Chem Soc; 2019 Jul; 141(30):11739-11744. PubMed ID: 31329438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple resonant modes coupling enabled strong CD response in a chiral metasurface.
    Zong S; Zeng D; Liu G; Wang Y; Liu Z; Chen J
    Opt Express; 2022 Oct; 30(22):40470-40481. PubMed ID: 36298979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular dichroism metamirror with diversified chiral molecules combinations.
    Gao W; Huang C; Feng Z; Li M; Dong J
    Opt Express; 2021 Oct; 29(21):33367-33379. PubMed ID: 34809150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional plasmonic chiral tetramers assembled by DNA origami.
    Shen X; Asenjo-Garcia A; Liu Q; Jiang Q; García de Abajo FJ; Liu N; Ding B
    Nano Lett; 2013 May; 13(5):2128-33. PubMed ID: 23600476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials.
    Li W; Coppens ZJ; Besteiro LV; Wang W; Govorov AO; Valentine J
    Nat Commun; 2015 Sep; 6():8379. PubMed ID: 26391292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong circular dichroism enhancement by plasmonic coupling between graphene and h-shaped chiral nanostructure.
    Wang Y; Dong J; Wang Z; Zhou S; Wang Q; Han Q; Gao W; Ren K; Qi J
    Opt Express; 2019 Nov; 27(23):33869-33879. PubMed ID: 31878446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circular Dichroism Measurement of Single Metal Nanoparticles Using Photothermal Imaging.
    Spaeth P; Adhikari S; Le L; Jollans T; Pud S; Albrecht W; Bauer T; Caldarola M; Kuipers L; Orrit M
    Nano Lett; 2019 Dec; 19(12):8934-8940. PubMed ID: 31790264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice.
    Ali H; Petronijevic E; Pellegrini G; Sibilia C; Andreani LC
    Opt Express; 2023 Apr; 31(9):14196-14211. PubMed ID: 37157289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-Induced Chirality of Plasmonic Nanoparticles Embedded in Porous Matrix.
    Sapunova AA; Yandybaeva YI; Zakoldaev RA; Afanasjeva AV; Andreeva OV; Gladskikh IA; Vartanyan TA; Dadadzhanov DR
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-Tailored Raman Frequency Conversion in Chiral Gas-Filled Hollow-Core Photonic Crystal Fibers.
    Davtyan S; Novoa D; Chen Y; Frosz MH; Russell PSJ
    Phys Rev Lett; 2019 Apr; 122(14):143902. PubMed ID: 31050443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature.
    Liao WC; Liao SW; Chen KJ; Hsiao YH; Chang SW; Kuo HC; Shih MH
    Sci Rep; 2016 May; 6():26578. PubMed ID: 27220650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.