These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 36876467)

  • 1. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids.
    Tolle I; Tiranti V; Prigione A
    EMBO Rep; 2023 Apr; 24(4):e55678. PubMed ID: 36876467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced pluripotent stem cells (iPSCs) for modeling mitochondrial DNA disorders.
    Prigione A
    Methods Mol Biol; 2015; 1265():349-56. PubMed ID: 25634286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaining Insight into Mitochondrial Genetic Variation and Downstream Pathophysiology: What Can i(PSCs) Do?
    Moreira JD; Gopal DM; Kotton DN; Fetterman JL
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concise Review: Heteroplasmic Mitochondrial DNA Mutations and Mitochondrial Diseases: Toward iPSC-Based Disease Modeling, Drug Discovery, and Regenerative Therapeutics.
    Hatakeyama H; Goto Y
    Stem Cells; 2016 Apr; 34(4):801-8. PubMed ID: 26850516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends and prospects in mitochondrial genome editing.
    Phan HTL; Lee H; Kim K
    Exp Mol Med; 2023 May; 55(5):871-878. PubMed ID: 37121968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and Characterization of Induced Pluripotent Stem Cells from Patients with mtDNA Mutations.
    Hämäläinen RH; Suomalainen A
    Methods Mol Biol; 2016; 1353():65-75. PubMed ID: 26187202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Combined Model of Human iPSC-Derived Liver Organoids and Hepatocytes Reveals Ferroptosis in DGUOK Mutant mtDNA Depletion Syndrome.
    Guo J; Duan L; He X; Li S; Wu Y; Xiang G; Bao F; Yang L; Shi H; Gao M; Zheng L; Hu H; Liu X
    Adv Sci (Weinh); 2021 May; 8(10):2004680. PubMed ID: 34026460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concise Review: Induced Pluripotent Stem Cell-Based Drug Discovery for Mitochondrial Disease.
    Inak G; Lorenz C; Lisowski P; Zink A; Mlody B; Prigione A
    Stem Cells; 2017 Jul; 35(7):1655-1662. PubMed ID: 28544378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hallmark Molecular and Pathological Features of POLG Disease are Recapitulated in Cerebral Organoids.
    Chen A; Yangzom T; Hong Y; Lundberg BC; Sullivan GJ; Tzoulis C; Bindoff LA; Liang KX
    Adv Sci (Weinh); 2024 May; 11(18):e2307136. PubMed ID: 38445970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tackling mitochondrial diversity in brain function: from animal models to human brain organoids.
    Menacho C; Prigione A
    Int J Biochem Cell Biol; 2020 Jun; 123():105760. PubMed ID: 32339638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic rescue in pluripotent cells from patients with mtDNA disease.
    Ma H; Folmes CD; Wu J; Morey R; Mora-Castilla S; Ocampo A; Ma L; Poulton J; Wang X; Ahmed R; Kang E; Lee Y; Hayama T; Li Y; Van Dyken C; Gutierrez NM; Tippner-Hedges R; Koski A; Mitalipov N; Amato P; Wolf DP; Huang T; Terzic A; Laurent LC; Izpisua Belmonte JC; Mitalipov S
    Nature; 2015 Aug; 524(7564):234-8. PubMed ID: 26176921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.
    Lorenz C; Lesimple P; Bukowiecki R; Zink A; Inak G; Mlody B; Singh M; Semtner M; Mah N; Auré K; Leong M; Zabiegalov O; Lyras EM; Pfiffer V; Fauler B; Eichhorst J; Wiesner B; Huebner N; Priller J; Mielke T; Meierhofer D; Izsvák Z; Meier JC; Bouillaud F; Adjaye J; Schuelke M; Wanker EE; Lombès A; Prigione A
    Cell Stem Cell; 2017 May; 20(5):659-674.e9. PubMed ID: 28132834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced pluripotent stem cell-derived models for mtDNA diseases.
    Hämäläinen RH
    Methods Enzymol; 2014; 547():399-415. PubMed ID: 25416367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hereditary Optic Neuropathies: Induced Pluripotent Stem Cell-Based 2D/3D Approaches.
    García-López M; Arenas J; Gallardo ME
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33477675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue.
    Silva-Pinheiro P; Nash PA; Van Haute L; Mutti CD; Turner K; Minczuk M
    Nat Commun; 2022 Feb; 13(1):750. PubMed ID: 35136065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of mitochondrial genome engineering.
    Silva-Pinheiro P; Minczuk M
    Nat Rev Genet; 2022 Apr; 23(4):199-214. PubMed ID: 34857922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial disease: mtDNA and protein segregation mysteries in iPSCs.
    Pickrell AM; Youle RJ
    Curr Biol; 2013 Dec; 23(23):R1052-4. PubMed ID: 24309284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial Base Editing: Recent Advances towards Therapeutic Opportunities.
    Kar B; Castillo SR; Sabharwal A; Clark KJ; Ekker SC
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation.
    Yahata N; Matsumoto Y; Omi M; Yamamoto N; Hata R
    Sci Rep; 2017 Nov; 7(1):15557. PubMed ID: 29138463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.