These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36876909)

  • 1. Distinct roles of forward and backward alpha-band waves in spatial visual attention.
    Alamia A; Terral L; D'ambra MR; VanRullen R
    Elife; 2023 Mar; 12():. PubMed ID: 36876909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateralization in Alpha-Band Oscillations Predicts the Locus and Spatial Distribution of Attention.
    Ikkai A; Dandekar S; Curtis CE
    PLoS One; 2016; 11(5):e0154796. PubMed ID: 27144717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
    Marshall TR; O'Shea J; Jensen O; Bergmann TO
    J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateralized Suppression of Alpha-Band EEG Activity As a Mechanism of Target Processing.
    Bacigalupo F; Luck SJ
    J Neurosci; 2019 Jan; 39(5):900-917. PubMed ID: 30523067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No Evidence for a Role of Spatially Modulated α-Band Activity in Tactile Remapping and Short-Latency, Overt Orienting Behavior.
    Ossandón JP; König P; Heed T
    J Neurosci; 2020 Nov; 40(47):9088-9102. PubMed ID: 33087476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception.
    Capilla A; Schoffelen JM; Paterson G; Thut G; Gross J
    Cereb Cortex; 2014 Feb; 24(2):550-61. PubMed ID: 23118197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms?
    Banerjee S; Snyder AC; Molholm S; Foxe JJ
    J Neurosci; 2011 Jul; 31(27):9923-32. PubMed ID: 21734284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Too little, too late, and in the wrong place: Alpha band activity does not reflect an active mechanism of selective attention.
    Antonov PA; Chakravarthi R; Andersen SK
    Neuroimage; 2020 Oct; 219():117006. PubMed ID: 32485307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.
    Thut G; Nietzel A; Brandt SA; Pascual-Leone A
    J Neurosci; 2006 Sep; 26(37):9494-502. PubMed ID: 16971533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Triple-Flash Illusion Reveals a Driving Role of Alpha-Band Reverberations in Visual Perception.
    Gulbinaite R; İlhan B; VanRullen R
    J Neurosci; 2017 Jul; 37(30):7219-7230. PubMed ID: 28663196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turning the Stimulus On and Off Changes the Direction of α Traveling Waves.
    Pang 庞兆阳 Z; Alamia A; VanRullen R
    eNeuro; 2020; 7(6):. PubMed ID: 33168617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity.
    Wildegger T; van Ede F; Woolrich M; Gillebert CR; Nobre AC
    J Neurophysiol; 2017 Mar; 117(3):1385-1394. PubMed ID: 28077669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory recruitment of bilateral visual cortex during spatial attention to competing rhythmic inputs.
    Gray MJ; Frey HP; Wilson TJ; Foxe JJ
    J Neurosci; 2015 Apr; 35(14):5489-503. PubMed ID: 25855167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective spatial attention involves two alpha-band components associated with distinct spatiotemporal and functional characteristics.
    Jia J; Fang F; Luo H
    Neuroimage; 2019 Oct; 199():228-236. PubMed ID: 31154048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex.
    Worden MS; Foxe JJ; Wang N; Simpson GV
    J Neurosci; 2000 Mar; 20(6):RC63. PubMed ID: 10704517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of alpha-band power underlies exogenous attention to emotional distractors.
    Arana L; Melcón M; Kessel D; Hoyos S; Albert J; Carretié L; Capilla A
    Psychophysiology; 2022 Sep; 59(9):e14051. PubMed ID: 35318692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time EEG Feedback on Alpha Power Lateralization Leads to Behavioral Improvements in a Covert Attention Task.
    Schneider C; Pereira M; Tonin L; Millán JDR
    Brain Topogr; 2020 Jan; 33(1):48-59. PubMed ID: 31317285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographic specificity of alpha power during auditory spatial attention.
    Deng Y; Choi I; Shinn-Cunningham B
    Neuroimage; 2020 Feb; 207():116360. PubMed ID: 31760150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-stimulus alpha-band power and phase fluctuations originate from different neural sources and exert distinct impact on stimulus-evoked responses.
    Zazio A; Ruhnau P; Weisz N; Wutz A
    Eur J Neurosci; 2022 Jun; 55(11-12):3178-3190. PubMed ID: 33539589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.