BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36876969)

  • 1. A gas phase fractionation acquisition scheme integrating ion mobility for rapid diaPASEF library generation.
    Penny J; Arefian M; Schroeder GN; Bengoechea JA; Collins BC
    Proteomics; 2023 Apr; 23(7-8):e2200038. PubMed ID: 36876969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Effects of the Spectral Library on Analysis of diaPASEF Data.
    Wen C; Gan G; Xu X; Lin G; Chen X; Wu Y; Xu Z; Wang J; Xie C; Wang HR; Zhong CQ
    J Proteome Res; 2022 Feb; 21(2):507-518. PubMed ID: 34969243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing data-independent acquisition (DIA) spectral library workflows for plasma proteomics studies.
    Rice SJ; Belani CP
    Proteomics; 2022 Sep; 22(17):e2200125. PubMed ID: 35708973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data.
    Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ
    J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fractionation proteomics for local SWATH library building.
    Govaert E; Van Steendam K; Willems S; Vossaert L; Dhaenens M; Deforce D
    Proteomics; 2017 Aug; 17(15-16):. PubMed ID: 28664598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. diaTracer enables spectrum-centric analysis of diaPASEF proteomics data.
    Li K; Teo GC; Yang KL; Yu F; Nesvizhskii AI
    bioRxiv; 2024 May; ():. PubMed ID: 38854051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample Fractionation Techniques for CSF Peptide Spectral Library Generation.
    Pacharra S; Marcus K; May C
    Methods Mol Biol; 2019; 2044():69-77. PubMed ID: 31432407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of experiments approach for systematic optimization of a single-shot diaPASEF plasma proteomics workflow applicable for high-throughput.
    Rice SJ; Belani CP
    Proteomics Clin Appl; 2024 Jan; 18(1):e2300006. PubMed ID: 37650339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A data-independent acquisition (DIA)-based quantification workflow for proteome analysis of 5000 cells.
    Jiang N; Gao Y; Xu J; Luo F; Zhang X; Chen R
    J Pharm Biomed Anal; 2022 Jul; 216():114795. PubMed ID: 35489320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS-QTOF Instrument.
    Guergues J; Wohlfahrt J; Stevens SM
    J Proteome Res; 2022 Aug; 21(8):2036-2044. PubMed ID: 35876248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries.
    Pino LK; Just SC; MacCoss MJ; Searle BC
    Mol Cell Proteomics; 2020 Jul; 19(7):1088-1103. PubMed ID: 32312845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for dia-PASEF.
    Skowronek P; Thielert M; Voytik E; Tanzer MC; Hansen FM; Willems S; Karayel O; Brunner AD; Meier F; Mann M
    Mol Cell Proteomics; 2022 Sep; 21(9):100279. PubMed ID: 35944843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation.
    Lou R; Liu W; Li R; Li S; He X; Shui W
    Nat Commun; 2021 Nov; 12(1):6685. PubMed ID: 34795227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020.
    Zhang F; Ge W; Ruan G; Cai X; Guo T
    Proteomics; 2020 Sep; 20(17-18):e1900276. PubMed ID: 32275110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MaxDIA enables library-based and library-free data-independent acquisition proteomics.
    Sinitcyn P; Hamzeiy H; Salinas Soto F; Itzhak D; McCarthy F; Wichmann C; Steger M; Ohmayer U; Distler U; Kaspar-Schoenefeld S; Prianichnikov N; Yılmaz Ş; Rudolph JD; Tenzer S; Perez-Riverol Y; Nagaraj N; Humphrey SJ; Cox J
    Nat Biotechnol; 2021 Dec; 39(12):1563-1573. PubMed ID: 34239088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating high quality libraries for DIA MS with empirically corrected peptide predictions.
    Searle BC; Swearingen KE; Barnes CA; Schmidt T; Gessulat S; Küster B; Wilhelm M
    Nat Commun; 2020 Mar; 11(1):1548. PubMed ID: 32214105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive spectral assay library to quantify the Escherichia coli proteome by DIA/SWATH-MS.
    Midha MK; Kusebauch U; Shteynberg D; Kapil C; Bader SL; Reddy PJ; Campbell DS; Baliga NS; Moritz RL
    Sci Data; 2020 Nov; 7(1):389. PubMed ID: 33184295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
    Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M
    Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PulseDIA: Data-Independent Acquisition Mass Spectrometry Using Multi-Injection Pulsed Gas-Phase Fractionation.
    Cai X; Ge W; Yi X; Sun R; Zhu J; Lu C; Sun P; Zhu T; Ruan G; Yuan C; Liang S; Lyu M; Huang S; Zhu Y; Guo T
    J Proteome Res; 2021 Jan; 20(1):279-288. PubMed ID: 32975123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample Size-Comparable Spectral Library Enhances Data-Independent Acquisition-Based Proteome Coverage of Low-Input Cells.
    Siyal AA; Chen ES; Chan HJ; Kitata RB; Yang JC; Tu HL; Chen YJ
    Anal Chem; 2021 Dec; 93(51):17003-17011. PubMed ID: 34904835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.