These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36877139)

  • 1. KomaMRI.jl: An open-source framework for general MRI simulations with GPU acceleration.
    Castillo-Passi C; Coronado R; Varela-Mattatall G; Alberola-López C; Botnar R; Irarrazaval P
    Magn Reson Med; 2023 Jul; 90(1):329-342. PubMed ID: 36877139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPU-accelerated Bloch simulations and MR-STAT reconstructions using the Julia programming language.
    van der Heide O; van den Berg CAT; Sbrizzi A
    Magn Reson Med; 2024 Aug; 92(2):618-630. PubMed ID: 38441315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulseq-Graphical Programming Interface: Open source visual environment for prototyping pulse sequences and integrated magnetic resonance imaging algorithm development.
    Ravi KS; Potdar S; Poojar P; Reddy AK; Kroboth S; Nielsen JF; Zaitsev M; Venkatesan R; Geethanath S
    Magn Reson Imaging; 2018 Oct; 52():9-15. PubMed ID: 29540330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRIReco.jl: An MRI reconstruction framework written in Julia.
    Knopp T; Grosser M
    Magn Reson Med; 2021 Sep; 86(3):1633-1646. PubMed ID: 33817833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhoenixMR: A GPU-based MRI simulation framework with runtime-dynamic code execution.
    Duncan-Gelder P; O'Keeffe D; Bones P; Marsh S
    Med Phys; 2024 Sep; 51(9):6120-6133. PubMed ID: 39078046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. coreMRI: A high-performance, publicly available MR simulation platform on the cloud.
    Xanthis CG; Aletras AH
    PLoS One; 2019; 14(5):e0216594. PubMed ID: 31100074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-source MR imaging and reconstruction workflow.
    Veldmann M; Ehses P; Chow K; Nielsen JF; Zaitsev M; Stöcker T
    Magn Reson Med; 2022 Dec; 88(6):2395-2407. PubMed ID: 35968675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.
    Liu F; Velikina JV; Block WF; Kijowski R; Samsonov AA
    IEEE Trans Med Imaging; 2017 Feb; 36(2):527-537. PubMed ID: 28113746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRISIMUL: a GPU-based parallel approach to MRI simulations.
    Xanthis CG; Venetis IE; Chalkias AV; Aletras AH
    IEEE Trans Med Imaging; 2014 Mar; 33(3):607-17. PubMed ID: 24595337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical Note: Four-dimensional deformable digital phantom for MRI sequence development.
    Hanson HM; Eiben B; McClelland JR; van Herk M; Rowland BC
    Med Phys; 2021 Sep; 48(9):5406-5413. PubMed ID: 34101858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open-source magnetic resonance imaging acquisition: Data and documentation for two validated pulse sequences.
    Tong G; Gaspar AS; Qian E; Ravi KS; Vaughan JT; Nunes RG; Geethanath S
    Data Brief; 2022 Jun; 42():108105. PubMed ID: 35434217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance computing MRI simulations.
    Stöcker T; Vahedipour K; Pflugfelder D; Shah NJ
    Magn Reson Med; 2010 Jul; 64(1):186-93. PubMed ID: 20577987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs.
    Wang D; Ostenson J; Smith DS
    Magn Reson Imaging; 2020 Feb; 66():248-256. PubMed ID: 31740194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AI-driven and automated MRI sequence optimization in scanner-independent MRI sequences formulated by a domain-specific language.
    Hoinkiss DC; Huber J; Plump C; Lüth C; Drechsler R; Günther M
    Front Neuroimaging; 2023; 2():1090054. PubMed ID: 37554629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SBMLToolkit.jl: a Julia package for importing SBML into the SciML ecosystem.
    Lang PF; Jain A; Rackauckas C
    J Integr Bioinform; 2024 Mar; 21(1):. PubMed ID: 38801698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPU accelerated grouped magnetic resonance fingerprinting using clustering techniques.
    Ullah I; Hassan AM; Saad RM; Omer H
    Magn Reson Imaging; 2023 Apr; 97():13-23. PubMed ID: 36581213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated GPU based SPECT Monte Carlo simulations.
    Garcia MP; Bert J; Benoit D; Bardiès M; Visvikis D
    Phys Med Biol; 2016 Jun; 61(11):4001-18. PubMed ID: 27163656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficient Bloch simulation of magnetic resonance imaging sequences based on deep learning.
    Huang H; Yang Q; Wang J; Zhang P; Cai S; Cai C
    Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36921351
    [No Abstract]   [Full Text] [Related]  

  • 19. Flow MRI simulation in complex 3D geometries: Application to the cerebral venous network.
    Fortin A; Salmon S; Baruthio J; Delbany M; Durand E
    Magn Reson Med; 2018 Oct; 80(4):1655-1665. PubMed ID: 29405357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.
    Su L; Yang Y; Bednarz B; Sterpin E; Du X; Liu T; Ji W; Xu XG
    Med Phys; 2014 Jul; 41(7):071709. PubMed ID: 24989378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.