These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36877191)

  • 1. Chiroptical Activity in All-Inorganic Intrinsically Chiral Perovskite-like Nanocrystals Synthesized via Enantioselective Strategy.
    Cao Z; He J; Jiao C; Liu Z; Xu L; Zheng C; Peng S; Chen B
    J Phys Chem Lett; 2023 Mar; 14(10):2533-2541. PubMed ID: 36877191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantiomeric Control of Intrinsically Chiral Nanocrystals.
    Hananel U; Ben-Moshe A; Tal D; Markovich G
    Adv Mater; 2020 Oct; 32(41):e1905594. PubMed ID: 31782846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances.
    Ben-Moshe A; Maoz BM; Govorov AO; Markovich G
    Chem Soc Rev; 2013 Aug; 42(16):7028-41. PubMed ID: 23788027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-Assisted Self-Assembly of 3D Perovskite Nanocrystals into Chiral Inorganic Quasi-2D Perovskites (n = 3) with Ligand-Ratio-Dependent Chirality Inversion.
    Wu Y; Zhao T; Shao X; Chen J; Zhang T; Li B; Jiang S
    Small; 2023 Sep; 19(36):e2301034. PubMed ID: 37165614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiroptical Activity of Type II Core/Shell Cu
    Shao X; Zhang T; Li B; Zhou M; Ma X; Wang J; Jiang S
    Inorg Chem; 2019 May; 58(9):6534-6543. PubMed ID: 31007027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective Crystallization of Chiral Inorganic Crystals of ϵ-Zn(OH)
    Otis G; Nassir M; Zutta M; Saady A; Ruthstein S; Mastai Y
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20924-20929. PubMed ID: 32776435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous Crystallization of Perovskite Nanocrystals in Nonpolar Organic Solvents: A Versatile Approach for their Shape-Controlled Synthesis.
    Huang H; Li Y; Tong Y; Yao EP; Feil MW; Richter AF; Döblinger M; Rogach AL; Feldmann J; Polavarapu L
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16558-16562. PubMed ID: 31433100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral Inversion and Recovery of Supramolecular Luminescent Copper Nanocluster Hydrogels Triggered by Polyethyleneimine and Polyoxometalates.
    Li S; Zhang S; Feng N; Zhang N; Zhu Y; Liu Y; Wang W; Xin X
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52324-52333. PubMed ID: 36416052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-Temperature Diffusion-Induced Extraction for Perovskite Nanocrystals with High Luminescence and Stability.
    Yao F; Liu Y; Xu Y; Peng J; Gui P; Liang J; Lin Q; Tao C; Fang G
    Small Methods; 2021 Jun; 5(6):e2001292. PubMed ID: 34927924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminescence and Stability Enhancement of Inorganic Perovskite Nanocrystals via Selective Surface Ligand Binding.
    Yin J; Yang H; Gutiérrez-Arzaluz L; Zhou Y; Brédas JL; Bakr OM; Mohammed OF
    ACS Nano; 2021 Nov; 15(11):17998-18005. PubMed ID: 34723469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histidine-Mediated Synthesis of Chiral Cobalt Oxide Nanoparticles for Enantiomeric Discrimination and Quantification.
    Liu X; Du Y; Wang S; Huang Y; Tian Y; García-Lojo D; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G
    Small; 2023 Jun; 19(26):e2205187. PubMed ID: 36967558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembled Suprastructures of Inorganic Chiral Nanocrystals and Hierarchical Chirality.
    Wang PP; Yu SJ; Ouyang M
    J Am Chem Soc; 2017 May; 139(17):6070-6073. PubMed ID: 28414901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Topographical Engineering of Chiral Au Nanocrystals with Chiral Hot Spots for Plasmon-Enhanced Chiral Discrimination.
    Wu F; Li F; Tian Y; Lv X; Luan X; Xu G; Niu W
    Nano Lett; 2023 Sep; 23(17):8233-8240. PubMed ID: 37589668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small symmetry-breaking triggering large chiroptical responses of Ag
    Luo XM; Gong CH; Pan F; Si Y; Yuan JW; Asad M; Dong XY; Zang SQ; Mak TCW
    Nat Commun; 2022 Mar; 13(1):1177. PubMed ID: 35246541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiroptical Transitions of Enantiomeric Ligand-Activated Nickel Oxides.
    Lin J; Liu R; Zhu X; Wei A; Xu X; He T; Cheng J; Li Y
    Small; 2022 Apr; 18(14):e2107570. PubMed ID: 35187806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral Detection of Glucose: An Amino Acid-Assisted Surface-Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals.
    Wang N; Zhao L; Liu C; Zhang J; He Y; Yang H; Liu X
    Anal Chem; 2022 Oct; 94(42):14565-14572. PubMed ID: 36219134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly-stable tin-based perovskite nanocrystals produced by passivation and coating of gelatin.
    Lyu B; Guo X; Gao D; Kou M; Yu Y; Ma J; Chen S; Wang H; Zhang Y; Bao X
    J Hazard Mater; 2021 Feb; 403():123967. PubMed ID: 33265008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.