BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 36877373)

  • 41. Tyrosine kinase inhibitors for acute myeloid leukemia: A step toward disease control?
    Megías-Vericat JE; Ballesta-López O; Barragán E; Martínez-Cuadrón D; Montesinos P
    Blood Rev; 2020 Nov; 44():100675. PubMed ID: 32147087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Incorporating FLT3 inhibitors in the frontline treatment of FLT3 mutant acute myeloid leukemia.
    Wang ES
    Best Pract Res Clin Haematol; 2019 Jun; 32(2):154-162. PubMed ID: 31203997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gilteritinib: An FMS-like tyrosine kinase 3/AXL tyrosine kinase inhibitor for the treatment of relapsed or refractory acute myeloid leukemia patients.
    Reed DR; Sen JM; Pierce EJ; Elsarrag RZ; K Keng M
    J Oncol Pharm Pract; 2020 Jul; 26(5):1200-1212. PubMed ID: 32338136
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RSK Inhibition Induces Apoptosis by Downregulating Protein Synthesis in a Variety of Acute Myeloid Leukemia Cell Lines.
    Katayama K; Nishihata A
    Biol Pharm Bull; 2021 Dec; 44(12):1843-1850. PubMed ID: 34602526
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions.
    Larrosa-Garcia M; Baer MR
    Mol Cancer Ther; 2017 Jun; 16(6):991-1001. PubMed ID: 28576946
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FLT3 Inhibitors for Treating Acute Myeloid Leukemia.
    Hassanein M; Almahayni MH; Ahmed SO; Gaballa S; El Fakih R
    Clin Lymphoma Myeloma Leuk; 2016 Oct; 16(10):543-549. PubMed ID: 27450971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomic analysis in myeloid sarcoma and comparison with paired acute myeloid leukemia.
    Greenland NY; Van Ziffle JA; Liu YC; Qi Z; Prakash S; Wang L
    Hum Pathol; 2021 Feb; 108():76-83. PubMed ID: 33232718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance.
    Grunwald MR; Levis MJ
    Int J Hematol; 2013 Jun; 97(6):683-94. PubMed ID: 23613268
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advancing treatment of acute myeloid leukemia: the future of FLT3 inhibitors.
    Elshoury A; Przespolewski A; Baron J; Wang ES
    Expert Rev Anticancer Ther; 2019 Mar; 19(3):273-286. PubMed ID: 30681373
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [FLT3 inhibitors in the treatment of FLT3-mutated acute myeloid leukemia].
    Kawashima N
    Rinsho Ketsueki; 2021; 62(8):954-966. PubMed ID: 34497236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clinical considerations for the use of FLT3 inhibitors in acute myeloid leukemia.
    Weis TM; Marini BL; Bixby DL; Perissinotti AJ
    Crit Rev Oncol Hematol; 2019 Sep; 141():125-138. PubMed ID: 31279288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013?
    Levis M
    Hematology Am Soc Hematol Educ Program; 2013; 2013():220-6. PubMed ID: 24319184
    [TBL] [Abstract][Full Text] [Related]  

  • 53. FLT3 kinase inhibitors in the management of acute myeloid leukemia.
    Illmer T; Ehninger G
    Clin Lymphoma Myeloma; 2007 Dec; 8 Suppl 1():S24-34. PubMed ID: 18282363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quizartinib in the treatment of FLT3-internal-tandem duplication-positive acute myeloid leukemia.
    Paul S; DiPippo AJ; Ravandi F; Kadia TM
    Future Oncol; 2019 Dec; 15(34):3885-3894. PubMed ID: 31559849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The molecular mechanisms behind activation of FLT3 in acute myeloid leukemia and resistance to therapy by selective inhibitors.
    Friedman R
    Biochim Biophys Acta Rev Cancer; 2022 Jan; 1877(1):188666. PubMed ID: 34896257
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia.
    Gebru MT; Wang HG
    J Hematol Oncol; 2020 Nov; 13(1):155. PubMed ID: 33213500
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acute myeloid leukemia: advancing clinical trials and promising therapeutics.
    Daver N; Cortes J; Kantarjian H; Ravandi F
    Expert Rev Hematol; 2016 May; 9(5):433-45. PubMed ID: 26910051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of autophagy in targeted therapy for acute myeloid leukemia.
    Du W; Xu A; Huang Y; Cao J; Zhu H; Yang B; Shao X; He Q; Ying M
    Autophagy; 2021 Oct; 17(10):2665-2679. PubMed ID: 32917124
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recurrent Mutations in Cyclin D3 Confer Clinical Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia.
    Smith CC; Viny AD; Massi E; Kandoth C; Socci ND; Rapaport F; Najm M; Medina-Martinez JS; Papaemmanuil E; Tarver TC; Hsu HH; Le MH; West B; Bollag G; Taylor BS; Levine RL; Shah NP
    Clin Cancer Res; 2021 Jul; 27(14):4003-4011. PubMed ID: 34103301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emergence of polyclonal FLT3 tyrosine kinase domain mutations during sequential therapy with sorafenib and sunitinib in FLT3-ITD-positive acute myeloid leukemia.
    Baker SD; Zimmerman EI; Wang YD; Orwick S; Zatechka DS; Buaboonnam J; Neale GA; Olsen SR; Enemark EJ; Shurtleff S; Rubnitz JE; Mullighan CG; Inaba H
    Clin Cancer Res; 2013 Oct; 19(20):5758-68. PubMed ID: 23969938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.