These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 36877455)
1. Chitosan Nerve Grafts Incorporated with SKP-SC-EVs Induce Peripheral Nerve Regeneration. Zhou X; Yu M; Chen D; Deng C; Zhang Q; Gu X; Ding F Tissue Eng Regen Med; 2023 Apr; 20(2):309-322. PubMed ID: 36877455 [TBL] [Abstract][Full Text] [Related]
2. Repair of peripheral nerve defects by nerve grafts incorporated with extracellular vesicles from skin-derived precursor Schwann cells. Yu M; Gu G; Cong M; Du M; Wang W; Shen M; Zhang Q; Shi H; Gu X; Ding F Acta Biomater; 2021 Oct; 134():190-203. PubMed ID: 34289422 [TBL] [Abstract][Full Text] [Related]
3. Chitosan/PLGA-based tissue engineered nerve grafts with SKP-SC-EVs enhance sciatic nerve regeneration in dogs through miR-30b-5p-mediated regulation of axon growth. Yu M; Shen M; Chen D; Li Y; Zhou Q; Deng C; Zhou X; Zhang Q; He Q; Wang H; Cong M; Shi H; Gu X; Zhou S; Ding F Bioact Mater; 2024 Oct; 40():378-395. PubMed ID: 38978801 [TBL] [Abstract][Full Text] [Related]
4. Improvement of sensory neuron growth and survival via negatively regulating PTEN by miR-21-5p-contained small extracellular vesicles from skin precursor-derived Schwann cells. Cong M; Shen M; Wu X; Li Y; Wang L; He Q; Shi H; Ding F Stem Cell Res Ther; 2021 Jan; 12(1):80. PubMed ID: 33494833 [TBL] [Abstract][Full Text] [Related]
6. Extracellular vesicles from skin precursor-derived Schwann cells promote axonal outgrowth and regeneration of motoneurons via Akt/mTOR/p70S6K pathway. Wu X; Wang L; Cong M; Shen M; He Q; Ding F; Shi H Ann Transl Med; 2020 Dec; 8(24):1640. PubMed ID: 33490152 [TBL] [Abstract][Full Text] [Related]
7. Schwann cells and mesenchymal stem cells in laminin- or fibronectin-aligned matrices and regeneration across a critical size defect of 15 mm in the rat sciatic nerve. Gonzalez-Perez F; Hernández J; Heimann C; Phillips JB; Udina E; Navarro X J Neurosurg Spine; 2018 Jan; 28(1):109-118. PubMed ID: 29125428 [TBL] [Abstract][Full Text] [Related]
8. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap. Zhu C; Huang J; Xue C; Wang Y; Wang S; Bao S; Chen R; Li Y; Gu Y Neurosci Res; 2018 Oct; 135():21-31. PubMed ID: 29288689 [TBL] [Abstract][Full Text] [Related]
9. Study of synergistic role of allogenic skin-derived precursor differentiated Schwann cells and heregulin-1β in nerve regeneration with an acellular nerve allograft. Wang H; Wu J; Zhang X; Ding L; Zeng Q Neurochem Int; 2016 Jul; 97():146-53. PubMed ID: 27063890 [TBL] [Abstract][Full Text] [Related]
11. Brachial plexus bridging with specific extracellular matrix-modified chitosan/silk scaffold: a new expand of tissue engineered nerve graft. Song L; Guo Q; Guo J; Xu X; Xu K; Li Y; Yang T; Gu X; Cao R; Cui S J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35259733 [No Abstract] [Full Text] [Related]
12. Enhanced in vivo survival of Schwann cells by a synthetic oxygen carrier promotes sciatic nerve regeneration and functional recovery. Ma T; Zhu L; Yang Y; Quan X; Huang L; Liu Z; Sun Z; Zhu S; Huang J; Luo Z J Tissue Eng Regen Med; 2018 Jan; 12(1):e177-e189. PubMed ID: 27592228 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the chitosan/glycerol-beta-phosphate disodium salt hydrogel application in peripheral nerve regeneration. Zheng L; Ao Q; Han H; Zhang X; Gong Y Biomed Mater; 2010 Jun; 5(3):35003. PubMed ID: 20404399 [TBL] [Abstract][Full Text] [Related]
14. Sensory recovery after cell therapy in peripheral nerve repair: effects of naïve and skin precursor-derived Schwann cells. Shakhbazau A; Mohanty C; Kumar R; Midha R J Neurosurg; 2014 Aug; 121(2):423-31. PubMed ID: 24949674 [TBL] [Abstract][Full Text] [Related]
16. Skin precursor-derived Schwann cells accelerate in vivo prevascularization of tissue-engineered nerves to promote peripheral nerve regeneration. Li M; Cheng X; Feng S; Zhu H; Lu P; Zhang P; Cai X; Qiao P; Gu X; Wang G; Xue C; Wang H Glia; 2023 Jul; 71(7):1755-1769. PubMed ID: 36971489 [TBL] [Abstract][Full Text] [Related]
17. SKP-SC-EVs Mitigate Denervated Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation and Improving Microcirculation. Wang W; Shen D; Zhang L; Ji Y; Xu L; Chen Z; Shen Y; Gong L; Zhang Q; Shen M; Gu X; Sun H Antioxidants (Basel); 2021 Dec; 11(1):. PubMed ID: 35052570 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome sequencing promotes insights on the molecular mechanism of SKP-SC-EVs mitigating denervation-induced muscle atrophy. Lin J; Cai Y; Wang J; Liu R; Qiu C; Huang Y; Liu B; Yang X; Zhou S; Shen Y; Wang W; Zhu J Mol Biol Rep; 2023 Dec; 51(1):9. PubMed ID: 38085347 [TBL] [Abstract][Full Text] [Related]
19. Anisotropic microtopography surface of chitosan scaffold regulating skin precursor-derived Schwann cells towards repair phenotype promotes neural regeneration. Cong M; Wu X; Zhu L; Gu G; Ding F; Li G; Shi H Regen Biomater; 2024; 11():rbae005. PubMed ID: 38414797 [TBL] [Abstract][Full Text] [Related]
20. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis. Wang D; Lyu Y; Yang Y; Zhang S; Chen G; Pan J; Tian W Acta Biomater; 2022 Mar; 140():610-624. PubMed ID: 34852303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]