These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36877569)

  • 1. l-Lysine Stabilized FeNi Nanoparticles for the Catalytic Reduction of Biomass-Derived Substrates in Water Using Magnetic Induction.
    Raya-Barón Á; Mazarío J; Mencia G; Fazzini PF; Chaudret B
    ChemSusChem; 2023 Jun; 16(12):e202300009. PubMed ID: 36877569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media.
    Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G
    Front Chem; 2020; 8():221. PubMed ID: 32373576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges.
    Jin X; Yin B; Xia Q; Fang T; Shen J; Kuang L; Yang C
    ChemSusChem; 2019 Jan; 12(1):71-92. PubMed ID: 30240143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic liquid-Pluronic P123 mixed micelle stabilized water-soluble Ni nanoparticles for catalytic hydrogenation.
    Yu Y; Zhu W; Hua L; Yang H; Qiao Y; Zhang R; Guo L; Zhao X; Hou Z
    J Colloid Interface Sci; 2014 Feb; 415():117-26. PubMed ID: 24267338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts.
    Li X; Zhang L; Wang S; Wu Y
    Front Chem; 2019; 7():948. PubMed ID: 32117861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.
    Gowda RR; Chen EY
    ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of carboxymethyl cellulose as binder for the production of water-soluble catalysts.
    Paganelli S; Massimi N; Di Michele A; Piccolo O; Rampazzo R; Facchin M; Beghetto V
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132541. PubMed ID: 38777012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar.
    Li D; Koike M; Wang L; Nakagawa Y; Xu Y; Tomishige K
    ChemSusChem; 2014 Feb; 7(2):510-22. PubMed ID: 24376075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically Induced Catalytic Reduction of Biomass-Derived Oxygenated Compounds in Water.
    Cerezo-Navarrete C; Marin IM; García-Miquel H; Corma A; Chaudret B; Martínez-Prieto LM
    ACS Catal; 2022 Jul; 12(14):8462-8475. PubMed ID: 37528952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles.
    Ibrahim M; Poreddy R; Philippot K; Riisager A; Garcia-Suarez EJ
    Dalton Trans; 2016 Dec; 45(48):19368-19373. PubMed ID: 27878165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions.
    Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z
    J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation.
    Čelič TB; Grilc M; Likozar B; Tušar NN
    ChemSusChem; 2015 May; 8(10):1703-10. PubMed ID: 25755008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimetallic FeNi nanoparticles immobilized by biomass-derived hierarchically porous carbon for efficient removal of Cr(VI) from aqueous solution.
    Wang H; Zhuang M; Shan L; Wu J; Quan G; Cui L; Zhang Y; Yan J
    J Hazard Mater; 2022 Feb; 423(Pt A):127098. PubMed ID: 34523485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Light(er) Approach for the Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan without External H
    Jaryal A; Venugopala Rao B; Kailasam K
    ChemSusChem; 2022 Jul; 15(13):e202200430. PubMed ID: 35451567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current trends and prospects in catalytic upgrading of lignocellulosic biomass feedstock into ultrapure biofuels.
    Karuppasamy K; Theerthagiri J; Selvaraj A; Vikraman D; Parangusan H; Mythili R; Choi MY; Kim HS
    Environ Res; 2023 Jun; 226():115660. PubMed ID: 36913997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.
    Liu X; Zhang B; Fei B; Chen X; Zhang J; Mu X
    Faraday Discuss; 2017 Sep; 202():79-98. PubMed ID: 28650491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu-NPs@C Nanosheets Derived from a PVP-assisted 2D Cu-MOF with Renewable Ligand for High-Efficient Selective Hydrogenation of 5-Hydroxymethylfurfural.
    Bao L; Yang SQ; Hu TL
    ChemSusChem; 2022 Jul; 15(13):e202200392. PubMed ID: 35373919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MoO
    Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of HPMC stabilized nickel nanoparticles and investigation of their magnetic and catalytic properties.
    Maity D; Mollick MM; Mondal D; Bhowmick B; Neogi SK; Banerjee A; Chattopadhyay S; Bandyopadhyay S; Chattopadhyay D
    Carbohydr Polym; 2013 Oct; 98(1):80-8. PubMed ID: 23987319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.