These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 36877840)
1. Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. Warren AO; Kite ES Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2209751120. PubMed ID: 36877840 [TBL] [Abstract][Full Text] [Related]
4. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Luger R; Barnes R Astrobiology; 2015 Feb; 15(2):119-43. PubMed ID: 25629240 [TBL] [Abstract][Full Text] [Related]
5. Was Venus the First Habitable World of our Solar System? Way MJ; Del Genio AD; Kiang NY; Sohl LE; Grinspoon DH; Aleinov I; Kelley M; Clune T Geophys Res Lett; 2016 Aug; 43(16):8376-8383. PubMed ID: 28408771 [TBL] [Abstract][Full Text] [Related]
6. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model. Gebauer S; Grenfell JL; Stock JW; Lehmann R; Godolt M; von Paris P; Rauer H Astrobiology; 2017 Jan; 17(1):27-54. PubMed ID: 28103105 [TBL] [Abstract][Full Text] [Related]
7. Magma Ocean Evolution of the TRAPPIST-1 Planets. Barth P; Carone L; Barnes R; Noack L; Mollière P; Henning T Astrobiology; 2021 Nov; 21(11):1325-1349. PubMed ID: 34314604 [TBL] [Abstract][Full Text] [Related]
8. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Genda H; Abe Y Nature; 2005 Feb; 433(7028):842-4. PubMed ID: 15729335 [TBL] [Abstract][Full Text] [Related]
9. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Kasting JF Icarus; 1988; 74():472-94. PubMed ID: 11538226 [TBL] [Abstract][Full Text] [Related]
10. Redox state of Earth's magma ocean and its Venus-like early atmosphere. Sossi PA; Burnham AD; Badro J; Lanzirotti A; Newville M; O'Neill HSC Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33239296 [TBL] [Abstract][Full Text] [Related]
12. Proposed energy-metabolisms cannot explain the atmospheric chemistry of Venus. Jordan S; Shorttle O; Rimmer PB Nat Commun; 2022 Jun; 13(1):3274. PubMed ID: 35701394 [TBL] [Abstract][Full Text] [Related]
13. First measurement of helium on Mars: implications for the problem of radiogenic gases on the terrestrial planets. Krasnopolsky VA; Bowyer S; Chakrabarti S; Gladstone GR; McDonald JS Icarus; 1994 Jun; 109(2):337-51. PubMed ID: 11539139 [TBL] [Abstract][Full Text] [Related]
14. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation. Brounce M; Stolper E; Eiler J Proc Natl Acad Sci U S A; 2017 Aug; 114(34):8997-9002. PubMed ID: 28784788 [TBL] [Abstract][Full Text] [Related]
15. Habitable zones around main sequence stars. Kasting JF; Whitmire DP; Reynolds RT Icarus; 1993 Jan; 101(1):108-28. PubMed ID: 11536936 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen isotopic evidence for early oxidation of silicate Earth. Pahlevan K; Schaefer L; Hirschmann MM Earth Planet Sci Lett; 2019 Nov; 526():. PubMed ID: 33688096 [TBL] [Abstract][Full Text] [Related]
17. Biologically Available Chemical Energy in the Temperate but Uninhabitable Venusian Cloud Layer: What Do We Want to Know? Cockell CS; Higgins PM; Johnstone AA Astrobiology; 2021 Oct; 21(10):1224-1236. PubMed ID: 33470900 [TBL] [Abstract][Full Text] [Related]
18. Mars and Earth: origin and abundance of volatiles. Anders E; Owen T Science; 1977 Nov; 198(4316):453-65. PubMed ID: 17842109 [TBL] [Abstract][Full Text] [Related]
19. The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Trail D; Watson EB; Tailby ND Nature; 2011 Nov; 480(7375):79-82. PubMed ID: 22129728 [TBL] [Abstract][Full Text] [Related]