These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36877998)

  • 1. Reduced graphene oxide/ionic liquid composites with tunable interlayer spacing for improved charge/discharge kinetics in supercapacitors.
    Korkut AS; Uralcan B
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36877998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors.
    Lin JH
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29419773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Anionic Surfactant/Ionic Liquids Intercalated Reduced Graphene Oxide for High-performance Supercapacitors.
    Lin JH
    Nanoscale Res Lett; 2018 Jul; 13(1):215. PubMed ID: 30030696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors.
    Lin M; Chen B; Wu X; Qian J; Fei L; Lu W; Chan LW; Yuan J
    Nanoscale; 2016 Jan; 8(4):1854-60. PubMed ID: 26726127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effects of reduced graphene oxide with freeze drying tuned interfacial structure on performance of transparent and flexible supercapacitors.
    He Y; Zhang X; Zhong Y; Li X; Wu L; Liu H; Gou H; Wang G
    J Colloid Interface Sci; 2019 Oct; 554():650-657. PubMed ID: 31351335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Interlayer Spaces and Interfacial Structures on High-Performance MXene/Ionic Liquid Supercapacitors: A Molecular Dynamics Simulation.
    Sun X; Li Y; Wang Y; Liu Z; Dong K; Zhang S
    Langmuir; 2024 Jan; 40(4):2220-2229. PubMed ID: 38214961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ionic liquid-modified RGO/polyaniline composite for high-performance flexible all-solid-state supercapacitors.
    Dong C; Zhang X; Yu Y; Huang L; Li J; Wu Y; Liu Z
    Chem Commun (Camb); 2020 Oct; 56(80):11993-11996. PubMed ID: 32896850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.
    Dang YQ; Ren SZ; Liu G; Cai J; Zhang Y; Qiu J
    Nanomaterials (Basel); 2016 Nov; 6(11):. PubMed ID: 28335339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergetic effects of Fe
    Repp S; Harputlu E; Gurgen S; Castellano M; Kremer N; Pompe N; Wörner J; Hoffmann A; Thomann R; Emen FM; Weber S; Ocakoglu K; Erdem E
    Nanoscale; 2018 Jan; 10(4):1877-1884. PubMed ID: 29313048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Production of Mn₃O₄/rGO as an Efficient Electrode Material for Supercapacitor by Flame Plasma.
    Zhou Y; Guo L; Shi W; Zou X; Xiang B; Xing S
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29795008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and Capacitance of Ni Metal Organic Framework/Reduced Graphene Oxide Composites for Supercapacitors as Nanoarchitectonics.
    Kim J; Park SJ; Chung S; Kim S
    J Nanosci Nanotechnol; 2020 May; 20(5):2750-2754. PubMed ID: 31635611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous NiCo2O4 nanosheets/reduced graphene oxide composite: facile synthesis and excellent capacitive performance for supercapacitors.
    Ma L; Shen X; Ji Z; Cai X; Zhu G; Chen K
    J Colloid Interface Sci; 2015 Feb; 440():211-8. PubMed ID: 25460708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic structure and electrical property of ionic liquids at the MoS
    Wang M; Wang Y; Li M; Wang S; He H
    J Mol Model; 2021 Jan; 27(2):41. PubMed ID: 33459900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic Properties of GO/RGO Bilayer Electrodes Dictate Their Inter-/Intralayer Intractability to Modulate Their Capacitance Performance.
    Islam T; Hasan MM; Sarker S; Ahammad AJS
    ACS Omega; 2023 Apr; 8(15):14013-14024. PubMed ID: 37091380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadium Pentoxide Nanobelt-Reduced Graphene Oxide Nanosheet Composites as High-Performance Pseudocapacitive Electrodes: ac Impedance Spectroscopy Data Modeling and Theoretical Calculations.
    Gupta S; Aberg B; Carrizosa SB; Dimakis N
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freestanding Laser-Assisted Reduced Graphene Oxide Microribbon Textile Electrode Fabricated on a Liquid Surface for Supercapacitors and Breath Sensors.
    Shi HH; Jang S; Naguib HE
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27183-27191. PubMed ID: 31276359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-based oxygen-doped activated carbon/graphene composite for flexible supercapacitors.
    Ren R; Zhong Y; Ren X; Fan Y
    RSC Adv; 2022 Sep; 12(39):25807-25814. PubMed ID: 36199316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range.
    Lu Z; Liu X; Wang T; Huang X; Dou J; Wu D; Yu J; Wu S; Chen X
    J Colloid Interface Sci; 2023 May; 638():709-718. PubMed ID: 36780851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VO
    Lv W; Yang C; Meng G; Zhao R; Han A; Wang R; Liu J
    Sci Rep; 2019 Jul; 9(1):10831. PubMed ID: 31346231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.