These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36878025)

  • 1. Susceptibility to walking balance perturbations in young adults is largely unaffected by anticipation.
    Eichenlaub EK; Urrego DD; Sapovadia S; Allen J; Mercer VS; Crenshaw JR; Franz JR
    Hum Mov Sci; 2023 Jun; 89():103070. PubMed ID: 36878025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovering whole-body angular momentum and margin of stability after treadmill-induced perturbations during sloped walking in healthy young adults.
    Shokouhi S; Sritharan P; Lee PV
    Sci Rep; 2024 Feb; 14(1):4421. PubMed ID: 38388724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Associations between asymmetry and reactive balance control during split-belt walking.
    Cornwell T; Novotny R; Finley JM
    J Biomech; 2024 Jul; 172():112221. PubMed ID: 38972274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The margin of stability is affected differently when walking under quasi-random treadmill perturbations with or without full visual support.
    Wang Z; Xie H; Chien JH
    PeerJ; 2024; 12():e16919. PubMed ID: 38390385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of perturbation timing on recovering whole-body angular momentum during very slow walking.
    van Mierlo M; Abma M; Vlutters M; van Asseldonk EHF; van der Kooij H
    Hum Mov Sci; 2023 Oct; 91():103138. PubMed ID: 37573800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer and retention effects of gait training with anterior-posterior perturbations to postural responses after medio-lateral gait perturbations in older adults.
    Rieger MM; Papegaaij S; Pijnappels M; Steenbrink F; van Dieën JH
    Clin Biomech (Bristol, Avon); 2020 May; 75():104988. PubMed ID: 32174482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does the effect of walking balance perturbations generalize across contexts?
    Shelton AD; McTaggart EM; Allen JL; Mercer VS; Crenshaw JR; Franz JR
    Hum Mov Sci; 2024 Feb; 93():103158. PubMed ID: 38029635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slowing down to preserve balance in the presence of optical flow perturbations.
    Shelton AD; McTaggart EM; Allen JL; Mercer VS; Franz JR
    Gait Posture; 2022 Jul; 96():365-370. PubMed ID: 35839534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent tuning of balance control and aftereffects following optical flow perturbation training in older adults.
    Richards JT; Selgrade BP; Qiao M; Plummer P; Wikstrom EA; Franz JR
    J Neuroeng Rehabil; 2019 Jul; 16(1):81. PubMed ID: 31262319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of arm motion on postural stability when recovering from a slip perturbation.
    Gholizadeh H; Hill A; Nantel J
    J Biomech; 2019 Oct; 95():109269. PubMed ID: 31443945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait stability in response to platform, belt, and sensory perturbations in young and older adults.
    Roeles S; Rowe PJ; Bruijn SM; Childs CR; Tarfali GD; Steenbrink F; Pijnappels M
    Med Biol Eng Comput; 2018 Dec; 56(12):2325-2335. PubMed ID: 29946955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sagittal-plane balance perturbations during very slow walking: Strategies for recovering linear and angular momentum.
    van Mierlo M; Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2023 May; 152():111580. PubMed ID: 37058767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small directional treadmill perturbations induce differential gait stability adaptation.
    Li J; Huang HJ
    J Neurophysiol; 2022 Jan; 127(1):38-55. PubMed ID: 34851745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speeding up: Discrete mediolateral perturbations increased self-paced walking speed in young and older adults.
    Castano CR; Lee LD; Huang HJ
    Gait Posture; 2023 May; 102():198-204. PubMed ID: 37043989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of Stability during Perturbed Walking in Parkinson's Disease.
    Martelli D; Luo L; Kang J; Kang UJ; Fahn S; Agrawal SK
    Sci Rep; 2017 Dec; 7(1):17875. PubMed ID: 29259237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pilot study on the feasibility and effectiveness of treadmill-based perturbations for assessing and improving walking stability in chronic obstructive pulmonary disease.
    McCrum C; Vaes AW; Delbressine JM; Koopman M; Liu WY; Willems P; Meijer K; Spruit MA
    Clin Biomech (Bristol, Avon); 2022 Jan; 91():105538. PubMed ID: 34823220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery from sagittal-plane whole body angular momentum perturbations during walking.
    van Mierlo M; Ambrosius JI; Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2022 Aug; 141():111169. PubMed ID: 35738058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.